LGS 2 verändlicher Lösen


0
Hallo zusammen, ich soll die Funktion f(x,y)=x^3+y^3-6xy+3y^2-6x+3y+2 untersuchen. Dafür habe ich zuerst die partiellen Ableitungen gebildet. Habe nun die Ableitung fx(x,y) und fy(x,y), welche ich gleich 0 setzen muss und anschließend in die andere einsetzen... Aber ich finde keinen Lösungsansatz. Kann mir jemand sagen, wie er hier vorgehen würde um die kritischen Punkte zu ermitteln?

 

gefragt vor 6 Tage, 23 Stunden
p
punk,
Punkte: 10
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

stelle \( I \) nach \( y \) um und setze das dann in \( II \) ein. Danach hast du ein gewöhnliches Nullstellenproblem. 

Versuch dich mal. Ich gucke gerne nochmal über drüber.

Grüße Christian

geantwortet vor 5 Tage, 23 Stunden
christian_strack, verified
Sonstiger Berufsstatus, Punkte: 19.12K
 

Hallo Christian,

vielen Dank für deine Hilfe. Mit deiner Hilfestellung konnte ich die Aufgabe problemlos lösen.
Ich bin leider noch auf ein weiteres Hindernis gestoßen, wo mir der Ansatz zur Lösung fehlt.
Selber Aufgabentyp, jedoch sind die Ableitungen jetzt:

I 6x²+6xy+3y²-12x-6y
II 3x²+6xy+3y²-6x

Könntest Du mir hier vielleicht auch auf die Sprünge helfen?

Vielen Dank!!
  -   punk, kommentiert vor 5 Tage, 18 Stunden

Wir teilen erstmal beide Gleichungen durch \(3 \).
$$ \begin{array}{ccc} I: & 2x^2 + 2xy + y^2 - 4x - 2y & = 0 \\ II: & x^2 + 2xy + y^2 - 2x & = 0 \end{array} $$
Nun können wir durch die binomische Formel die zweite Gleichung umformen
$$ x^2 + 2xy + y^2 - 2x = (x+y)^2 - 2x = 0 $$
Wenn wir diese Gleichung nun nach \( y \) auflösen, erhalten wir
$$y = \sqrt{2x} - x $$
Das kannst du nun wieder in \( I \) einsetzen um die kritischen Punkte zu berechnen.

Sehr gerne :)
  -   christian_strack, verified kommentiert vor 5 Tage, 2 Stunden

Hallo,

vielen Dank!

Leider hänge ich trotzdem noch...
Habe y in die I eingesetzt.
Leider überfordert mich die Funktion jetzt ein bisschen...
2x²+2x*(√2x-x)+(√2x-x)²-4x-2*(√2x-x)=0

Darf ich die Passage (√2x-x)+(√2x-x)² weggürzen, sodass nur noch 2x*√2x-x) dort steht?
Oder muss ich alles ausmultiplizieren und zusammenfassen?
  -   punk, kommentiert vor 4 Tage, 20 Stunden

Wie willst du die wegkürzen?
Erstmal musst du alles ausmultiplizieren. Danach wirst du eine wesentlich schönere Gleichung haben :p
  -   christian_strack, verified kommentiert vor 4 Tage, 5 Stunden
Kommentar schreiben Diese Antwort melden