Ich bekomme den Induktionsschluss nicht fertig gestellt und brauche deshalb Hilfe

Aufrufe: 82     Aktiv: vor 6 Tage, 17 Stunden

1

 

gefragt vor 6 Tage, 23 Stunden
X
XxstudentxX,
Punkte: 21
 
Kommentar schreiben Diese Frage melden
1 Antwort
1

 

Hallo,

jetzt kommt viel gerechne. Ich setze in die Formel \(\frac{x(2n-1)(2n+1)}{3}\) für \(n\) einfach mal \(n+1\) ein. Achte darauf, wie ich versuche die ursprüngliche Formel zu erhalten (ich rechne nicht immer die Zahlen zusammen):

\(\frac{1}{3}\cdot (n+1)(2n-1\,+2)(2n+1\, +2) = \frac{1}{3}\left[n\, (2n-1\,+2)(2n+1\,+2) + (2n-1\,+2)(2n+1\,+2)\right]\)

\(= \frac{1}{3}\left[n(2n-1)(2n+1\,+2)+2n(2n+1\, +2)+(2n-1\,+2)(2n+1\,+2)\right]\)

\(= \frac{1}{3}\left[n(2n-1)(2n+1)+2n(2n-1)+2n(2n+1\, +2)+(2n-1\,+2)(2n+1\,+2)\right]\) pffff! ganz vorn: die Formel (die für \(n\) und wir müssen den Rest nur noch ausrechnen....:

\(\frac{1}{3}\left[n(2n-1)(2n+1)\right]+\frac{1}{3}\left[2n(2n-1)+2n(2n+3)+(2n+1)(2n+3)\right]\)

\(=\frac{1}{3}\left[n(2n-1)(2n+1)\right]+\frac{1}{3}\left[4n^2-2n+4n^2+6n+4n^2+8n+3\right]\) ... es wird langsam ...

\(=\frac{1}{3}\left[n(2n-1)(2n+1)\right]+\frac{1}{3}\left[12n^2+12n+3\right]\)

\(=\frac{1}{3}\left[n(2n-1)(2n+1)\right]+\left(4n^2+4n+1\right)\)

\(=\frac{n(2n-1)(2n+1)}{3}+(2n+1)^2\).

Phew! Wenn Du diese algebraischen manipulationen von unten nach oben durchführst, zeigt dies den Induktionsschluss.

Wenn noch Unklarheiten bestehen, einfach melden,

Viele Grüße,

MoNil

 

geantwortet vor 6 Tage, 18 Stunden
m
monil, verified
Sonstiger Berufsstatus, Punkte: 1K
 

Erstmal vielen Dank für den ausführlichen Rechenweg. Der ist Nachvollziehbar, aber ich frage mich woher die 1/3 kommen?
Vielleicht können Sie mir da noch auf die Sprünge helfen
  -   XxstudentxX, vor 6 Tage, 17 Stunden

Kein Grund mich zu siezen, ist aber nett danke ;-)
Ich hab einfach das Drittel aus der Originalformel vorgezogen:
\(\frac{n(2n-1)(2n+1)}{3}= \frac{1}{3}\cdot n(2n-1)(2n+1)\).
Da ich ja \(n+1\) an Stelle von \(n\) eingesetzt habe, ist der Bruch immer da, aber es ist leichter das Drittel rauszuziehen.. (sowohl wenn mans handschriftlich rechnet als auch in mathjax)
Viele Grüße
  -   monil, verified vor 6 Tage, 17 Stunden

Vielen Dank   -   XxstudentxX, vor 6 Tage, 17 Stunden

Sehr gerne!   -   monil, verified vor 6 Tage, 17 Stunden
Kommentar schreiben Diese Antwort melden