Potenzieren von einer Matrix

Erste Frage Aufrufe: 59     Aktiv: 02.05.2021 um 15:20

0
Hallo, 

ich möchte eine einfach 2x2 Matrix potenzieren. 
Leider finde ich nichts in der Literatur.

Mein Problem:
Ich muss bei einer vollständigen Induktion eine Matrix potenzieren und diese dann mit sich selbst multiplizieren.

Meine Frage ist also, wie ich auf das Ergebnis in der 2. Zeile komme.
- Danke

Diese Frage melden (1)
gefragt

Punkte: 14

 

Kommentar schreiben

1 Antwort
0
Es immer weniger Arbeit für uns, wenn die dazu gehörige Aufgabenstellung mitgeliefert wird.
Die Beh. ist ja: \(\begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix} ^n = \begin{pmatrix}1 & 3^{n-1} \\ 0 & 3^n\end{pmatrix}\)
Die Antwort auf Deine Frage: Es wurde die Ind.Ann. eingesetzt und ausmultipliziert.
Deine Frage entsteht nur, weil Du in die Lösung schaust, anstatt es erstmal selbst zu versuchen. Die Aufgabe ist nicht schwer, wenn man Induktion, Matrixmultiplikation und Potenzrechenregeln verstanden hat.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 13.33K
 

Mein Problem bei der Aufgabe ist ja nicht das Verständnis, sondern nur, dass ich nicht weiß wie man Matrizen potenziert.   ─   andyyfi 02.05.2021 um 13:45

In der Aufgabe müssen keine Matrizen potenziert werden.   ─   mikn 02.05.2021 um 14:01

wie soll ich dann auf die Lösung kommen?
  ─   andyyfi 02.05.2021 um 14:09

Du hast immer noch nicht gesagt wie die Aufgabe lautet.
Wenn sie (wie gesagt, ich spekuliere) lautet: Zeigen Sie (mit vollst. Ind.), dass für alle n gilt obige Beh. (in meiner ersten Antwort), dann ist hier nichts zu potenzieren. Wie lautet denn nun die Aufgabe?
  ─   mikn 02.05.2021 um 14:19

Beweise durch vollständige Induktion (n Element der Natürlichen Zahlen):
(1, 2; 0, 3)^n = (1, e^n -1; 0, 3^n)

Diese Aufgabe wurde bereits vor Wochen schon einmal durchgerechnet, leider weiß ich nicht mehr, wie wir von dem einem zum anderen Schritt gekommen sind.

(hab es leider nicht geschafft so schöner zu Formatieren.)
  ─   andyyfi 02.05.2021 um 14:27

Also lautet sie wie ich vermutet habe. Wie man von dem einen Schritt zum anderen kommt, habe ich Dir oben schon beantwortet. Es sind zwei Schritte gemacht worden, s.o. Ich vermute Du hast vollst. Ind. nicht verstanden.   ─   mikn 02.05.2021 um 14:31

Danke für deine Bemühungen, aber ich blick einfach nicht dahinter.   ─   andyyfi 02.05.2021 um 14:40

Dann solltest Du die Aufgabe nicht als beantwortet abhaken. Schreib den Ind.Anf. sauber auf und rechne ihn durch. Schreib die Ind. Ann. komplett hin. Dann die Ind.Beh.
Hast Du das gemacht? Wie lautet das? Rechne zur Übung die Potenzen Matrix^2, Matrix^3 aus.
  ─   mikn 02.05.2021 um 14:44

Jetzt habe ich den Schritt verstanden: Ich berechne nicht das Produkt der beiden Matrizen, sondern setze für den Linken teil die Behauptung ein.

Aber noch eine allgemeine Frage: gibt es eine allgemeine Formel zur Berechnung von Matrix-Potenzen?
  ─   andyyfi 02.05.2021 um 15:01

Ja, genau. Gut. Nein, für eine Potenz einer allgemeinen Matrix gibt es keine Formeln. Hier ist es relativ einfach, weil es nur 2x2 ist und eine Diagonalmatrix.   ─   mikn 02.05.2021 um 15:20

Kommentar schreiben