Element einer bestimmten Ordnung in einer Multiplikativen Gruppe Modulo finden

Erste Frage Aufrufe: 294     Aktiv: 12.02.2023 um 15:30

0

Ich känpfe gerade mit folgender Aufgabe:

Wir betrachten die multiplikative Gruppe G = <Z∗p , ·p , 1> modulo p = 67. (Z*p als telerfremde Reste mod p)

a) Geben Sie ein Element der Ordnung 11 an.
b) Wie viele Elemente der Ordnung 17 gibt es?

Zu a): Im Grunde könnte man das brute-forcen. Für jedes Element a a¹¹ mod 67 berechnen und schauen, ob 1 herauskommt. Es gibt aber sicher einen Weg, wie man manche Zahlen schon ausschließen kann, oder?

b) Und da phi(67) = 66 gilt, muss und die Ordnung jedes Elements die 66 Teilen muss, kann es kein Element der Ordnung 17 geben, richtig?

Diese Frage melden
gefragt

Punkte: 10

 
Kommentar schreiben
0 Antworten