Man kann natürlich stur in die Formel im Buch einsetzen (dann braucht man $\cos$ und $\sin$), man kann sich das aber auch leicht selbst überlegen (was viel lehrreicher ist).
Wie auch immer, die Matrix $M_f$ stimmt so.
Lehrer/Professor, Punkte: 31.5K
Hallo zusammen,
ich habe eine Verständnisfrage zu Aufgabe 1:
Die Lineare Abbildung f:R^3-->R^3 dreht jeden Vektor des Raumes R^3 um 180° um die x-Achse. (Vektoren, die selber auf der x-Achse liegen, werden nicht verändert.)
a) Wie lautet die Matrix M_f von f?
Ich habe mir folgende Matrix überlegt:
{{1, 0, 0}, {0, cosα, -sinα}, {0, sinα, cosα}}. Ist das richtig bzw. was kann man daran verbessern?
EDIT vom 18.11.2022 um 14:00:
Mit α meine ich den Winkel alpha. Habe mal das Übungsblatt als PDF hochgeladen. :)
EDIT vom 18.11.2022 um 14:08:
Das ist die Aufgabe. ;)EDIT vom 18.11.2022 um 14:30: