die Funktion hat eine waagerechte Asymptote aber keine senkrechte. Wogegen strebt denn die Funktion im Unendlichen?
Grüße Christian

Sonstiger Berufsstatus, Punkte: 29.77K
Eine echt gebrochenrationale Funktion geht immer gegen Null.
Deine Zählerfunktion ist eine Gerade und deine Nennerfunktion eine Parabel. Wenn du die Funktionen vergleichst, siehst du auch, dass für große Zahlen die quadratische Funktion wesentlich größer ist.
Man leitet sich das wie folgt her, $\frac 1 {x^s}$ für irgendein $s\geq 1$ geht gegen Null.
$$ \frac {3x+4} {x^2+5} = \frac {x(3+\frac 4x)} {x^2(1+\frac 5 {x^2})} = \frac 1 x \frac {(3+\frac 4x)} {(1+\frac 5 {x^2})} \to 0$$
Das geht gegen Null, weil der Bruch gegen $\frac 31 $ geht, aber der Bruch $\frac 1 x $ gegen Null.
Also immer wenn der Grad des Nennerpolynoms größer ist als der Grad des Zählerpolynoms geht die Funktion gegen Null. ─ christian_strack 22.10.2021 um 00:56
die Funktion strebt nach minus Unendlich . Wenn ich nicht komplett falsch liege.
Wie berechne ich dann aber die Gleichung der Asymptoten?
Stehe da echt gerade voll auf dem Schlauch.
MfG ─ keineangabe 21.10.2021 um 18:57