- gestellte Fragen oder gegebene Antworten wurden upvotet (5 Punkte je Upvote)
- erhaltene Antwort akzeptiert (2 Punkte je Antwort)
- gegebene Antwort wurde akzeptiert (15 Punkte je Antwort)
Ich komme bei einer Aufgabe nicht weiter. Sie lautet: Es seien p und q verschiedene Primzahlen. Zeigen Sie, dass ggT (p, q) = 1. Ich habe versucht den Euklidischen Alorithmus anzuwenden:
ggT(p,q) = 1 p = 1 * q + 1 q = 1 * 1 + p 1 = 1 * p + q p = 1 * q + 1 q = p * 1 + 0 also ggT(p,q) = 1
Ich weiß nicht ob das richtig ist. Ich würde mich über Hilfe freuen.
Das geht schon in der 1. Zeile schief, wo Du einfach so p=1⋅q+1 hinschreibst. Begründung gibst Du keine. Warum sollte auch p=q+1 sein? Ohne Begründung macht das Weiterrechnen aber keinen Sinn. Außerdem geht es viel einfacher direkt mit der Def. von Teiler. Mach einen indirekten Beweis. Vergiss den Text nicht (Vor.:... Beh.:..., Beweis: Text....)