Den Schnittwinkel konnte ich ausrechnen.
Danach habe ich eine Differenzenfunktion gemacht, indem ich von der e-Funktion die Gerade abgezogen habe.
Darauf habe ich die erste Ableitung ausgerechnet und gleich 0 gesetzt und x = ln(1/2)/2 erhalten (stimmt mit Lösung überein). Nun verstehe ich nicht, warum ich x in die Funktion y=3e^(2x) einsetzen muss. Damit erhalte ich y=3/2. Ehrlich gesagt verstehe ich auch nicht wirklich, was der x-Wert aussagt.
Meine Berechnung:
Frage zur Lösung: Wie kommt man auf die Aussage, dass y'=6e^(2x) 3 sein muss? (siehe gelb markiert)
Dann müsste die Steigung beim x-Wert des Punktes genau die Steigung der Geraden sein...
EDIT vom 30.07.2022 um 15:03:
Skizze zu 5a)Noch eine Frage zum Lösungsvorgang von 5b)
Muss man hier mit den gegebenen Informationen "von hinten" beginnen? Denn bei der ersten Rechnung kürzt sich a weg. Hätte ich umgekehrt begonnen, gäbe es eine Gleichung mit 2 Variablen?
Berechnung: