0
Hallo zusammen,
Ich bin gerade etwas verwirrt und stehe ziemlich auf der Leitung. Mir wurde als Lösungsstrategie für Limes einmal beigebracht, dass man die Summanden immer durch die größte Potenz von n teilt.... gegeben ist die folgende Folge 

Das obere ist das was die Lösung sagt. Die Lösung sagt auch, dass +inf. Rauskommt weil d=1/3, also d>0 mit einer Folge multipliziert wird und gegen unendlich läuft. 

Generell war meine Logik erst: das ist eine Folge, die aus zwei zusammengesetzten Folgen besteht, dementsprechend müsste ich eigentlich jeden Term, also Zähler und Nenner getrennt betrachten können und wie folgt vorgehen:
Dann wäre aber der Grenzwert nicht +inf. Sondern 1/3.  Mich verwirrt einfach, was mir die Lösungsbeschreibung mit 1/3 sagen will.... bzw. Wo die in einem Lösungsweg vorkommen soll... Ich wäre wirklich dankbar für Eure Hilfe!
Diese Frage melden
gefragt

Punkte: 34

 
Kommentar schreiben
2 Antworten
1
Der Fehler im letzten Bild ist, dass du im Zähler durch $n^4$ teilst und im Nenner durch $n^3$. Das, was da rauskommt, ist dann nicht mehr dasselbe wie der ursprüngliche Term. 

Die Lösungsbeschreibung besagt nur, dass wenn du eine Folge hast, die divergiert, dann divergiert diese Folge auch, wenn man sie mit einer Zahl, hier $d$, multipliziert. Dieses $\frac{1}{3}$ findest du bei dem Term ja quasi ganz vorne. Man kann also im Nenner 3 ausklammern und dann das $\frac{1}{3}$ einfach vor den gesamten großen Bruch schreiben. Das ist aber eigentlich völlig unnötig hier. Man sollte sich auch nicht zu sehr auf "Musterlösungen" konzentrieren, wenn man selbst einen geeigneten Rechenweg gefunden hat. 

Bei deinem Versuch gibt es ein Problem: Grundsätzlich schreibt man den Limes nicht immer mit, sondern formt den Term erst einmal um und wendet ganz zum Schluss den Limes darauf an. Dann kannst du außerdem nicht hingehen und bei einigen Summanden schon $n\rightarrow \infty$ laufen lassen und bei anderen Summanden nicht. Statt also immer 0 dort hinzuschreiben, schreibst du die entsprechenden Brüche dorthin. Da die natürlich alle gegen 0 gehen, geht insgesamt der Nenner gegen 0 und damit der gesamte Ausdruck gegen unendlich. Also unbedingt nochmal die genaue Schreibweise dazu anschauen! Ansonsten ist der Ansatz vollkommen richtig. 
Diese Antwort melden
geantwortet

Selbstständig, Punkte: 17.95K

 

Wow, danke also wirklich perfekt erklärt. Hilft mir unfassbar weiter!!! Danke für die Hinweise zur Schreibweise, da bin ich mir einfach immer unsicher, weil wir nie Vorlesungen haben und ausformulierte Lösungen eine Rarität sind. Wenn man da so alleine wurschtelt, gewöhnt man sich viel Falsches an!   ─   gast12 12.01.2022 um 07:52

Kommentar schreiben

1
Hi. Also Zähler und Nenner getrennt betrachten funktioniert nicht. Durch entsprechendes ausklammern (teilen) könnte man hier auf jedes beliebige Ergebnis kommen.
Das Standardvorgehen ist eigentlich die größte Potenz des Nenners im Zähler und im Nenner auszuklammern. So kommt man meiner Meinung nach am einfachsten zum Ziel.
Diese Antwort melden
geantwortet

Punkte: 15

 

Kommentar schreiben