Sonstiger Berufsstatus, Punkte: 3.96K
hatte einen Denkfehler. Steige noch nicht ganz durch, wann mit an-1 das vorherige Glied gemeint ist und wann das aktuelle -1. a3=a1+a2 wäre doch 1+3=4 und nicht 3 oder sehe ich das falsch?
ist an=an-1+an-2 vielleicht gleich a3=a3-1+a3-2=3?
Gruß Hannah ─ user74b5b1 18.09.2021 um 17:52
\(a_3 < ( \frac{7}{4} )^3 <=> 4 < 5,36\)
Oben wurde für den Induktionsanfang \(a_1\) und \(a_2\) betrachtet. Die Indizes kommen aus \( n_0=1 \text{ und } n_0+1 =2\). Und es gilt \( a_{n_0} = a_1\) = 1 und \(a_{n_0+1}=a_2\) = 3 (s. Text "Seien ...").
Einfach nicht verwirren lassen und immer schauen, wo denn nun ein Buchstabe durch einen Wert explizit ersetzt wird. Wenn du so Indizes hast, musst du halt manchmal den Index erst berechnen. ─ lernspass 18.09.2021 um 18:10
vielen Dank!!! ─ user74b5b1 19.09.2021 um 08:21
dann ist n0+1 = ax = 3?
Gruß Hannah ─ user74b5b1 17.09.2021 um 23:56