1
Genau richtig.
Alles wird auf den Zeitpunkt Vollendung des 60. Lebensjahres bezogen.
Die Zahlungen 24.000 am 61. Geburtstags werden mit 1/q abgezinst, am 62. Geburtstag mit \((1/q)^2\) abgezinst, usw bis zu 71 . Geburtstag mit \((1/q)^{11}\) abgezinst.
Die Summe der Beträge ergibt den Rentenbarwert.
Kurzum: Deine Formel stimmt.
Alles wird auf den Zeitpunkt Vollendung des 60. Lebensjahres bezogen.
Die Zahlungen 24.000 am 61. Geburtstags werden mit 1/q abgezinst, am 62. Geburtstag mit \((1/q)^2\) abgezinst, usw bis zu 71 . Geburtstag mit \((1/q)^{11}\) abgezinst.
Die Summe der Beträge ergibt den Rentenbarwert.
Kurzum: Deine Formel stimmt.
Diese Antwort melden
Link
geantwortet

scotchwhisky
Sonstiger Berufsstatus, Punkte: 12.73K
Sonstiger Berufsstatus, Punkte: 12.73K
Da in der Aufgabe die erste Auszahlung am Beginn des Betrachtungszeitraums (60. Geburtstag) erfolgt und dies auch der Zeitpunkt der Ablösung durch Einmalzahlung ist muss der Rentenbarwert auf diesen Zeitpunkt berechnet werden. Da dort aber die 1. Rentenzahlung anfällt ist die Formel für vorschüssig zu benutzen (also Ergebnis 228,694) ─ scotchwhisky 28.04.2024 um 14:06