Transpornierte Vektoren

Erste Frage Aufrufe: 40     Aktiv: 31.07.2022 um 15:05

0

Kann es sein, dass ein "normaler" Vektor und ein transponierter Vektor dasselbe ist ?

Diese Frage melden
gefragt

Punkte: 10

 
Kommentar schreiben
1 Antwort
0
Herzlich Willkommen auf mathefragen.de!

Das Transponieren sorgt dafür das der Vektor statt üblicherweise als Spalte notiert nun als Zeile notiert wird. Seien der Einfachheit $\mathcal{v},\mathcal{x}\in \mathbb{R}^3$. Dann kann man $\mathcal{v}=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}$ transponiert schreiben als $\mathcal{v}^T=(v_1;v_2;v_3)$.

Was man dir nun sagen möchte ist, dass man den Funktionsterm $f(\mathcal{x})$ auf zwei verschiedene Arten berechnen kann. Entweder als Skalarprodukt $\mathcal{v}\cdot \mathcal{x}$ der Vektoren $\mathcal{v}$ und $\mathcal{x}$ oder mit Hilfe von Matrizenrechnung $\mathcal{v}^T\mathcal{x}$ (Zeile mal Spalte), wobei $\mathcal{v}^T$ (aufgrund des Transponierens von $\mathcal{v}$) als Matrix mit 1 Zeile und 3 Spalten und $\mathcal{x}$ als Matrix mit 3 Zeilen und 1 Spalte verstanden werden kann. Herausbekommt man eine Matrix mit 1 Zeile und 1 Spalte. Mit Hilfe beider Rechnungen kommt man auf deinen gewünschten summierten Funktionsterm.
Diese Antwort melden
geantwortet

Punkte: 6.78K

 

Kommentar schreiben