Abbildung aus Kern und Basis bestimmen

Aufrufe: 390     Aktiv: 27.07.2022 um 04:52

0

Hallo, ich habe leider keine Idee, wie ich hier anfangen muss. Hätte aber die Hoffnung, dass ich nach einem Tipp am Anfang selbst drauf kommen könnte :)
Wäre also dankbar über etwas Starthilfe.
gefragt

Punkte: 49

 
Kommentar schreiben
1 Antwort
1
Die Überschrift passt nicht zur Aufgabe. Es geht nicht darum so eine Abbildung zu bestimmen, sondern nur die Frage zu beantworten, ob es so eine gibt. In der Klausur würde so ein Missverständnis ein Riesen-Eigentor sein - so schießt man sich selbst aus dem Rennen.
Hat man also die Aufgabe erstmal verstanden, so liegt die Lösung auf der Hand:
Dimensionssatz anwenden. Die zugehörige Rechnung kann man, mit etwas Übung, im Kopf machen.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 38.91K

 

dim(V) = dim(R^4) = 4 = 1 + 3 = dim (Kern(phi)) + dim(BIld(phi))
Mehr nicht?
  ─   sreal 27.07.2022 um 00:46

Ich dachte, das habe ich getan. Weiß nicht, was du meinst, was ich machen soll   ─   sreal 27.07.2022 um 01:10

Dadurch dass die 3 Bild-Vektoren voneinander abhängig sind, gilt der Dimensionssatz nicht, der Voraussetzung für eine lineare Abbildung ist.
Stimmt das?
  ─   sreal 27.07.2022 um 02:27

Leider scheint diese Antwort Unstimmigkeiten zu enthalten und muss korrigiert werden. Mikn wurde bereits informiert.