Frage zu Eigenwerten

Aufrufe: 35     Aktiv: 22.02.2021 um 22:34

0
Gibt es nur eine Diagonalmatrix D, wenn die Ausgangsmatrix symmetrisch ist? Denn wir hatten im Studium eine Aufgabe, bei der man eine Transformationsmatrix nur bilden sollten, wenn die Ausgangsmatrix symmetrisch war. Oder gibt es irgend einen anderen Zusammenhang damit, dass die Ausgangsmatrix symmetrisch ist?
Diese Frage melden
gefragt

Punkte: 38

 

Kommentar schreiben

1 Antwort
1
Nein. Auch Matrizen, die nicht symmetrisch sind, können diagonalisierbar sein, zum Beispiel $$A=\begin{pmatrix}1 & 2\\0 & 3 \end{pmatrix}$$  mit $$V=\begin{pmatrix}1 & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2}\end{pmatrix}\quad\text{und}\quad V^{-1}AV=\begin{pmatrix}1 & 0 \\ 0 & 3\end{pmatrix}.$$
Diese Antwort melden
geantwortet

Selbstständig, Punkte: 6.9K
 

Kommentar schreiben