0

Hallo.
Es geht um Stetigkeit von Funktionen in einer Reihenentwicklung in Polarkoordinaten.

Es ist angegeben, dass für die Lösung einer Diff.-Gleichung auf einem Kreis \( U_{r}(0,0) \) mit einem Ansatz der Fourierreihenentwicklung gemacht wird:
\( u(x,y) = \sum_{(l,m)}r^l(a_{l,m}cos(mφ)+b_{l,m}sin(mφ)) \) mit \(b_{l,0} = 0\)

mit \(x=rcos(φ) \) und \(y = rsin(φ) \)

Es sollen jetzt alle Paare \((l,m)\) ermittelt werden, für die die Funktionen 
\( U_R (0,0) \rightarrow \mathbb{R} \) 
\((x,y) \rightarrow r^l cos(m​φ)\)
stetig sind.

Wie funktioniert das?
Vielen Dank schonmal...

gefragt

Punkte: 10

 

Kommentar schreiben

0 Antworten