DRINGEND Hilfe in Mathe gebraucht (Bitte)

Aufrufe: 77     Aktiv: 04.04.2021 um 15:50

0
Ich kenn mich bei diesem Beispiel garnicht aus, deswegen benötige ich Hilfe
Dankbar bin ich auf jeden Fall!

Diese Frage melden
gefragt

Punkte: 12

 

Kommentar schreiben

1 Antwort
0

Ihr werdet vermutlich bereits folgende Formel im Unterricht hergeleitet/gelernt haben:
\[K_n = R\cdot q\cdot\frac{q^n - 1}{q-1}\]
mit dem Kapital nach \(n\) Jahren \(K_n\), dem Zinsfaktor \(q\) und der jährlichen Rate \(R\).

Um die erste Aufgabe zu beantworten, muss die Formel lediglich nach R umgestellt, und alle gegebenen Werte eingesetzt werden (\(R = \frac{K_n}{q} \frac{q - 1}{q^n-1})\)

Bei der zweiten Frage musst du dir überlegen, wann die jeweiligen Einzahlungen in beiden Systemen verzinst werden.
Im ersten Fall, wird die jährliche Einzahlung direkt schon vollständig verzinst, bei monatlichen Einzahlungen wird jedoch nur die erste Einzahlung direkt verzinst, der Rest erst im nächsten Jahr. Somit ist das Kapital zu jederzeit um einen konstanten Faktor niedriger, als mit äquivalenten jährlichen Einzahlungen.


Falls es dich interessiert, könnte man das auch wiefolgt mathematisch analysieren:
Für das Kapital nach n Jahren mit monatlichen Raten \(r\) erhält man
\[K_n' = R - r + q r + q K_{n-1}' = (1 + \frac{q-1}{12}) R + q K_{n-1}' = (1 + \frac{q-1}{12}) R \frac{q^n - 1}{q-1}\]
Bildet man nun den Quotienten aus \(K_n\) und \(K_n'\) so ergibt sich \(\frac{K_n}{K_n'} = \frac{q}{1 + \frac{q-1}{12}} = \frac{12q}{11+q} > 1  \quad \forall q > 1\).
Konkret heißt das, dass für jeden positiven, vorschüssigen Zinssatz, die jährliche Einzahlung jederzeit zu einem größerem Kapital führt als die Monatliche.

Diese Antwort melden
geantwortet

Student, Punkte: 595
 

Manchmal ist weniger mehr... Ich denke bei derartigen Fragestellungen wurden die Rentenformeln im Unterricht behandelt, so dass man sich hier eine Herleitung sparen kann. Das führt eher zur zusätzlichen Verwirrung als dass es zum Verständnis beiträgt.   ─   cauchy 04.04.2021 um 00:56

@cauchy Hast Recht - mir war gestern ein wenig arg langweilig :)   ─   posix 04.04.2021 um 08:54

Kommentar schreiben