Satz von Tschebyschow

Aufrufe: 72     Aktiv: 22.08.2021 um 15:31

0
Servus,

Kann mir bei folgendem Satz (siehe Bild) erklären, warum die Differenz $q(x) = \tilde T_n(x) - p(x)$ ein Polynom höchstens vom Grad n-1 ist? 

Die Vorzeichen der Werte alternieren  genau (n+1) mal, aber würde das nicht bedeuten, dass $q(\tilde x_k)$ dann auch (n+1) Nullstellen hätte, und nicht nur n viele Nullstellen? Spielt zwar keine Rolle, weil beides größer als (n-1) ist und es ja nur um den Widerspruch geht, aber vom Prinzip her.


Noch eine allgemeine Frage: Wenn ich eine beliebige Funktion f interpolieren möchte, und ich kann die Stützstellen frei wählen, dann sollte ich unabhängig von f immer als Stützstellen die Nullstellen der Tschebyschow Polynome wählen? Verstehe ich das richtig?
Diese Frage melden
gefragt

Punkte: 158

 
Kommentar schreiben
1 Antwort
0
Die $n+1$ Werte $q(\tilde x_k)$, $k=0,...,n$ haben abwechselnde Vorzeichen. In der Abfolge dieser Werte gibt es dann $n$ Vorzeichenwechsel, also $n$ Intervalle, auf die der ZWS angewandt werden kann, was $n$ Nullstellen liefert. Der Autor der Quelle hat sich missverständlich ausgedrückt: Es gibt $n+1$ wechselnde Vorzeichen, aber nur $n$ Vorzeichenwechsel im Sinne von Wechsel von einem zum anderen.
Kann man sich am Beispiel klar machen ($n=2$ gibt 3 Werte, aber nur 2 VZwechsel).
Zur letzten Frage: Ja, wenn es darum geht, den Fehler in der max-Norm durch Polynominterpolation zu minimieren. Es ist aber in Anwendungen genau zu überlegen, was man will (welcher Fehler soll minimal werden? Soll mit Polynomen interpoliert oder gibt es andere, bessere Ansatzfunktionen? usw.).
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 16.16K

 

Vielen Dank! Kannst du noch kurz erklären, warum die Differenz $q(x) = \tilde T_n(x) - p(x)$ ein Polynom höchstens vom Grad n-1 ist?   ─   h1tm4n 22.08.2021 um 14:34

1
Beide Polynome haben Leitkoeffizient 1, so dass die höchste Potenz bei der Subtraktion wegfällt.   ─   cauchy 22.08.2021 um 14:42

1
Sorry, diese Frage hatte ich vergessen, ist aber ja jetzt geklärt.   ─   mikn 22.08.2021 um 14:49

Danke, dann ist die Begründung dafür gar nicht, weil max |p(x)| <1/[2^(n-1)] gilt. Das ist dann nur für später für den Widerspruch. Das hat mich verwirrt, weil es sich so ließt, als sei das die Begründung dafür.   ─   h1tm4n 22.08.2021 um 14:52

Wenn man es ohne die max-p(x)-Eigenschaft begründen kann, ist doch alles gut. Grad-Reduktion bei Gleichheit des führenden Summanden ist ein Standardargument, auf das man auch selbst kommt, wenn man die Polynome einfach mal hinschreibt (bzw. das, was man davon weiß). Beweise sollte man stets mit Stift und Papier daneben durcharbeiten, lesen alleine bringt nicht viel.   ─   mikn 22.08.2021 um 15:31

Kommentar schreiben