Warum es nur eine Lösung gibt kannst du dir auch einmal vor Augen führen wenn du beide Funktionen, also $-8x-48$ und $5\sqrt{x^2+80}$ einmal in ein Koordinatensystem zeichnest bzw. es dir plotten lässt. Dann siehst du das es nur einen Schnittpunkt gibt.
Das du beim Ausrechnen zwei Lösungen erhälst liegt daran, dass du die Gleichung sicherlich im ersten Schritt quadriert hast und dann versuchst mit Hilfe der p-q-Formel deine Lösungen zu bestimmen. Hier muss man darauf achten, dass Quadrieren KEINE Äquivalenzumformung ist! Nach dem Quadrieren kann eine Gleichung nämlich mehr Lösungen haben als zuvor. Einfaches Beispiel, betrachte die Gleichung $x=-5$, welche offensichtlich nur eine Lösung hat. Nach dem quadrieren erhälst du $x^2=25$, welche dann aber zwei Lösungen besitzt, nämlich $x_1=5$ und $x_2=-5$. Dabei ist aber $x_1$ aber keine Lösung deiner Ausgangsgleichung. Prüfen, welche deiner beiden ausgerechneten Lösungen auch Lösung deiner Ausgangsgleichung (vor dem quadrieren ist) kannst du, indem du die Probe machst.

Punkte: 8.04K