Die Normalapproximation anwenden können

Aufrufe: 56     Aktiv: 09.03.2021 um 22:06
1
Konzeptionell ist dein Vorgehen in Ordnung. Die Approximation gilt als gut, wenn \( \sigma^2 \geq 9 \) ist (trifft hier nicht zu, da \( \sigma^2 = 8) \) oder \(np \geq 5 \land n(1 - p) \geq 5 \) (trifft hier zu). Die Approximation lässt sich hier also durchführen, wobei die Stetigkeitskorrektur genutzt werden sollte, wie du es ja auch gamcht hast. Trotzdem sind mir einige Dinge aufgefallen: 
1. In Teil (a) steht 'unter 30%'. Gemeint ist also \( P(X < 15) = P(X \leq 14) \).
2. In (a) hast Du im letzten Schritt versehentlich \( 1.9455 \) anstatt \( 1.9445 \) geschrieben und am Ende der ersten Zeile das \( \Phi \) vergessen.
3. In Teil (b) steht über 20%. Gemeint ist also \( P(X > 10) = 1 - P(X \leq 10) \) (siehe Bemerkung 5).
4. In (b) hast Du falsch gerundet: \( \frac{10 + 0.5 - 10}{\sqrt{8}} = \frac{\sqrt{2}}{8} \approx 0.17678 \approx 0.177 \).
5. Generell gilt (für stetige Verteilungen, wie die Binomialverteilung) \( P(X \geq a) = 1 - P(X < a) \). Du musst also das kleiner (bzw. größer) gleich durch ein echt kleiner (bzw. größer) ersetzen, wenn Du mit der Gegenwahrscheinlichkeit arbeitest.
Diese Antwort melden
geantwortet

Punkte: 300
 

Danke für deine tolle Hilfe Tim   ─   mathelauch44 09.03.2021 um 22:06

Kommentar schreiben