TURM VON BABYLON `Textaufgabe´ | REIHEN**

Aufrufe: 40     Aktiv: vor 3 Tagen, 1 Stunde

0
Um die hier abgebildete Aufgabe geht es, ich habe ehrlich gesagt nicht mal einen richtigen Ansatz, vorstellen könnte ich mir allerdings, dass der Turm theoretisch ´unendlich´ hoch konstruiert werden kann (ohne die Statik zu betrachten).
Über Hilfe jeglicher Art freue ich mich wie immer sehr!

** Ganz unten der Würfel mit einer Kantenlänge von 1, darüber der 2. mit der Kantenlänge 1/2, als nächstes folgt der 3. mit der Kantenlänge 1/3 -> dann 1/4 usw.
Diese Frage melden
gefragt

Punkte: 5

 
Kommentar schreiben
1 Antwort
0
Hallo,
deiner ersten Einschätzung, dass der Turm beliebig hoch werden kann, folge ich. Kannst Du die Turmhöhe als Summe der Würfelhöhen formulieren?
Wie ist deine EInschätzung zum Farb- und Betonbedarf?
Diese Antwort melden
geantwortet

Sonstiger Berufsstatus, Punkte: 140

 

(SUMMENZEICHEN) 1/n
, ich denke die Farbe und Betonmenge ist endlich, geschlussfolgert über die harmonische Reihe
  ─   moabit.rolf vor 3 Tagen, 3 Stunden

Richtig, die Turmhöhe würde der Summe \(\sum_{n=1}^{\infty} \frac {1}{n} \) entsprechen. Die harmonische Reihe konvergiert nicht, d.h. hierüber kann gezeigt werden das die Vermutung eines "unendlich hohen" Turms richtig ist. Inwiefern ihr die Divergenz der harmonischen Reihe voraussetzen dürft weiß ich nicht. Es ist aber auch nicht schwierig dies zu zeigen.
Auch deine Einschätzung, dass die benötigte Farb- und Betonmenge endlich ist passt. Allerdings kannst du dies nicht über die harmonische Reihe schlussfolgern. Vielleicht hilft dir hier das Stichwort Integral-Kriterium?
  ─   drbau vor 3 Tagen, 1 Stunde

Kommentar schreiben