Vorgehen ist richtig, auch das Ergebnis bis rg(A).
Ab rg(A|b) stimmt es aber nicht. Ich finde diese Überlegung auch unnötig.
Am einfachsten ist:
Mach Dir klar, dass die eindeutige Lösbarkeit nie von der rechten Seite abhängt.
Für mehrdeutige/keine Lösbarkeit einfach die Gleichungen anschauen, insb. die letzte. Daran wird alles klar.
Zu b)
Du hast doch die Umformungen schon gemacht, warum machst Du sie nochmal?
Und schreib bitte von oben nach unten und links nach rechts (nicht von unten nach oben), damit man (und Du später auch selbst) es leicht lesen kann.
Das Ergebnis stimmt, aber warum zerlegst Du den Lösungsvektor? Wenn b) eine Klausuraufgabe wäre, hast Du hier ordentlich Zeit verschenkt.
Zu c)
Das Ergebnis von wolframalpha ist korrekt. Mach doch mit Deiner inversen Matrix die Probe. det(A)=-5.
Lehrer/Professor, Punkte: 32.98K
Ok das wundert mich da die Formel die wir aufgeschrieben hatten lautete Rg(A) = Rg(b) < Anzahl Zeilen für Mehrdeutige Lösbarkeit und auch in unseren Beispielen wird dies immer wieder so gezeigt, oh ja tut mir leid mein Fehler, jetzt erkenne ich es auch, Sie haben absolut recht Rg(A|b) entspricht ja immer Rg(A) ich füge ja lediglich eine Spalte hinzu.
Zu b) Ja war unnötig. Tut mir leid was meinen Sie mit von unten nach oben ? In einem Beispiel eines YT-Videos wurde dies auch so gemacht allerdings war ich mir da auch nicht sicher, allerdings gab es dort auch freie Variablen.
c) Ok danke dann muss mir beim Adjunkten Verfahren ein Fehler unterlaufen sein. Nächstes mal bleib ich bei der Einheitsmatrix. ─ user895a23 05.03.2022 um 00:03