Integral Aufgabe

Aufrufe: 244     Aktiv: 11 Monate her

0

Moin leute,

Ich habe folgendes problem und zwar soll ich 

Das integral         Sx√(x+6) 

berechnen habe auch die lösung dafür welche lautet:

F(x)=2/5(x+6)^5/2-6*2/3(x+6)^3/2+C

wenn ich dieses umstelle komme ich llerdings auf

F(x)=1/2*x^2*2/3(x+6)^3/2

kann mir vlt wer verraten was ich übesehe? schatze mal eine vergleichbare regel wie die produktregel kann das sein?

Vielen dank für eure hilfe

gefragt 11 Monate her
haukeger
Punkte: 31

 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

das ist leider alles nicht sehr leicht zu entziffern, aber du hast die Funktion

$$ x\sqrt{x+6} $$

und die Stammfunktion dieser Funktion ist

$$ \frac 2 5 (x+6)^{\frac 5 2 } - 6 \cdot \frac  2 3 (x+6)^{\frac 32} + C  $$

Und diese Funktion hast du nun umgeformt. Wenn ich das richtig interpretiere, wolltest du daraus ein Produkt machen?

dafür klammern wir \( (x+6)^{\frac 3 2 } \) aus und erhalten

$$ \begin{array}{ccccl} = & (\frac 2 5 (x+6) - 4 )(x+6)^{\frac 3 2} +C \\ = & ( \frac 2 5 (x+6) - \frac {20} 5)(x+6)^{\frac 3 2} +C  \\ = & (\frac {2(x+6) - 20} 5 )(x+6)^\frac 3 2 +C \\ = & \frac {2x + 12 - 20} 5 (x+6)^\frac 3 2 +C \\ = & \frac 2 5 (x-4)(x+6)^\frac 3 2 + C \end{array} $$

Beantwortet das deine Frage? 

Grüße Christian

geantwortet 11 Monate her
christian_strack
Sonstiger Berufsstatus, Punkte: 25.83K
 

Vielen dank schonmal für die hilfe
aber kannst du mir verraten welche regel du dafür verwendet hast?
und ja stimmt ist ein wenig kacke geschrieben ka wie man die formeln so schön wie deine z.b. hinbekommt.
  ─   haukeger 11 Monate her

ich habe es so verstanden, dass haukeger einfach jeden faktor für sich integriert hat anstatt richtig zu integrieren.. deswegen schicke ich meine antwort jetzt auch noch hinterher..;-)

Da du hier eine Verkettung stehen hast kannst du nicht einfach, so wie du es gemacht hast, jeden Faktor für sich integrieren. Bei solchen Integralen gibt es kein allgemein gültiges Rezept, wie man vorgeht. Hast du schonmal etwas von partieller Integration oder Integration durch Substitution gehört? Substitution führt bei deiner aufgabe relativ schnell zum ziel..
  ─   sakundo 11 Monate her

Jo wollte substitution anwenden aber fange grade damit erst an deswegen schätzte ich mal habe ich da was falsch gemacht
wie wendet man die denn korrekt an?
  ─   haukeger 11 Monate her

Ah ok dann hab ich das komplett falsch verstanden. Tut mir Leid und danke für den Hinweis. Es ging also um das Integrieren an sich.
Du kannst folgendermaßen substituieren:
$$ u= x+6 $$
Daraus folgt
$$ \frac {\mathrm{d}u} {\mathrm{d}x}= 1 $$
und somit
$$ \mathrm{d}u = \mathrm{d}x $$
und wir erhalten das Integral
$$ \int x \sqrt{x+6} \mathrm{d}x = \int (u-6)\sqrt{u} \mathrm{d} u $$
Dadurch können wir mit hilfe der Linearität zwei Integrale draus machen
$$ = \int u\sqrt{u} \mathrm{d} u - \int 6\sqrt{u} \mathrm{d}u $$
Das erste können wir durch die Potenzgesetze umschreiben
$$ u \cdot u^{\frac 1 2} = u^\frac 3 2 $$
und wir erhalten
$$ \int u^\frac 3 2 \mathrm{d}u - 6 \int u^\frac 1 2 \mathrm{d}u $$
Alles verständlich? :)
  ─   christian_strack 11 Monate her

ok so langsam komm ich dahinter.
muss das noch ein paar mal durchegehen mit der substituierung die check ich noch nicht so ganz.
Aber danke für eure Hilfe :D
  ─   haukeger 11 Monate her

Substitution hat viel mit Erfahrung zu tun. Umso mehr Beispiele man sieht, desto schneller und intuitiver funktioniert das substituieren.
Die lineare Substitution sollte man immer im Kopf behalten. Also etwas der Form \( u= x-x_0 \). Dadurch haben wir einen normalen Potenzausdruck erreicht. Häufig wird man dadurch nervige Zahlen los.
Ansonsten wenn du mit der Substitution übst, versuch einfach erstmal zuerst das zu substituieren, das gefühlt dort einfach nicht hingehört um es vernünftig zu integrieren und probiere mal etwas welche Effekte durch das substituieren von \( \mathrm{d}x \) entstehen. Dann bekommt man langsam ein Gefühl dafür.

Sind denn die Zwischenschritte von mir alle klar? Oder bestehen auch noch formale Unklarheiten, zum Beispiel die Handhabung des \( \mathrm{d}x\) ?
  ─   christian_strack 11 Monate her

joa soweit eigentlich ganz klar einziges problem was ich noch habe wieso dx/du zu =1 wird   ─   haukeger 11 Monate her

ahhh warte das ist doch die ableitung von u oder?   ─   haukeger 11 Monate her

wenn ja dann stellt sich mir nur noch die frage warum du=dx ?   ─   haukeger 11 Monate her

Das mit dem Differential (\(\mathrm{d}x\)) ist eine kniffelige Sache und man muss hier sehr aufpassen.
Die Idee des integrierens ist es, unendlich dünne Rechtecke zu basteln, und deren Flächeninhalte aufzusummieren. Diese haben die Höhe es Funktionswertes (also unsere Funktion) und die unendlich dünne Breite wird über \( \mathrm{d}x \) dargestellt.
Substituieren kannst du dir vorstellen, wie einen anderen Maßstab indem wir das ganze betrachten. Ändert sich der Wert der Höhe, so muss natürlich auch die Breite angepasst werden, damit wir trotzdem noch den selben Flächeninhalt haben.
Deshalb gucken wir uns an, wie sich \( u \) in Bezug zu \( x \) verändert. Und das beschreibt genau die Ableitung
$$ u' = \frac {\mathrm{d}u} {\mathrm{d}x} = (x+6)^\prime = 1 $$
Nun kommt es zu dem Teil wo wir aufpassen müssen.
Wir dürfen nur in einem bestimmten Kontext den Differentialquotienten (\(\frac {\mathrm{d}u} {\mathrm{d}x} \)) als Bruch auffassen (da es eigentlich ein so genannter Operator ist). In diesem Kontext dürfen wir das aber und in einigen anderen darf man es tatsächlich auch aber eben nicht in allen (ich finde es wichtig das im Hinterkopf zu behalten). Wir können aber bei der Substitution das \( \mathrm{d}x \) auf die andere Seite der Gleichung bringen und so erhalten wir
$$ \mathrm{d}u = \mathrm{d}x $$
  ─   christian_strack 11 Monate her

ah ok verstehe ja ich sehe schon ich muss mich da noch ein wenig reinfuchsen
aber danke aufjedenfall für die tolle Hilfe :D
  ─   haukeger 11 Monate her

Sehr gerne. Ja wenn man sich dran gewöhnt hat wird es einfacher. :)
Wenn neue Probleme auftauchen melde dich gerne nochmal.
  ─   christian_strack 11 Monate her

Vielen dank :D
ja ich lass das mit dem aufleiten erst mal liegen und kümmer mich lieber erst mal um das richtige beherschen vom ableiten und schau mir dann diese nochmal an jetzt habe ich aufjedenfall den input zum verstehen der aufgabe :D
aber kannst mir beim ableiten vlt noch behilflich sein ^^
https://www.mathefragen.de/frage/13857/tangenten-gleichung-aufstellen-aufgabe/
  ─   haukeger 11 Monate her

Schau ich mir sofort an :)   ─   christian_strack 11 Monate her

Für das vernünftige integrieren ist richtiges differenzieren auch essenziell. Nur so kann man sich vorstellen, was für eine Funktion abgeleitet das ergeben könnte was man da aufleiten soll :)   ─   christian_strack 11 Monate her

korrekt deswegen das eine nach dem anderen :D   ─   haukeger 11 Monate her
Kommentar schreiben Diese Antwort melden