Verständnisfrage zu einem Integral, partielle Integration

Aufrufe: 455     Aktiv: 11.02.2023 um 22:02

0
Abend zusammen,

folgendes Integral möchte ich bestimmen:
\( \int_0^1 (x^2*e^{-x} )\) 
Hier wende ich ja dadurch, dass ich zwei x-Terme habe die partielle Integration an.
\( U=x^2 \text{ }  \text{ }U'=2x\text{ } sowie\text{ } V'=e^{-x} \text{ }\text{ }V=-e^{-x} \) 
Es ergibt sich: \(  x^2*(-)e^{-x} -\int2x*(-)e^{-x} \) Da ich immer noch ein Produkt habe kann ich die partielle Integration nochmal durchführen und erhalte mit
\( U=2x \text{ } \text{ }U'=2 \text{ }sowie\text{ } V'=-e^{-x} \text{ }\text{ } V=e^{-x} \) 
\(  x^2*(-)e^{-x} -((-2x*e^{-x}) \int2e^{-x})) \) 
Und dann würde sich ergeben:\( -x^2*e^{-x}+2x*e^{-x}+2e^{-x}\) 

Ich habe mal in die Lösung gespickt und festgestellt, dass die Vorzeichen mal so gar nicht passen.
Trotz mehrmaligem nachrechnen findeich nicht den Schritt, bei dem ich falsch die Vorzeichen benutze.
Auch bin ich mir ein wenig unsicher, ob ich denn die Vorzeichen inklusive Faktor einfach so vor das Integral ziehen darf, oder ob ich mir damit das Integral bei mehrmaligem integrieren zerschieße.

Danke für den Input im Voraus
Diese Frage melden
gefragt

Punkte: 51

 
Kommentar schreiben
2 Antworten
0
Die 1. part. Integration ist richtig.
Bei der Berechnung des Restintegrals hast du einen Vorzeichenfehler.
Diese Antwort melden
geantwortet

Sonstiger Berufsstatus, Punkte: 12.71K

 

Kommentar schreiben

0
Mein Eindruck (auch von der vorigen Frage zu Dgl) ist, dass Du gut in der Lage bist, dir neues anzueignen. Das können hier nicht viele. Es wird Dir schnelle Fortschritte bringen.
Bei der Sorgfalt musst Du noch etwas drauflegen.
Du hast doch vorhin gelernt, wie man den Malpunkt in LaTeX schreibt?! Bei allen Integralen fehlt das $dx$ am Ende (keine Kosmetik, ist wichtig!).
Und um Deine Lösung zu prüfen, brauchst Du nicht spicken, sondern kannst selbst die Probe durch Ableiten machen (was auch gleichzeitig weiter übt).
Dein wirres Hantieren mit den Vorzeichen hat Dich, nicht überraschend, auf Abwege gebracht (hätte es mich auch). So was wie $(-)$ gibt es nicht. Schreibe nach der ersten partiellen Integration das erste $-$ vor den ersten Term und das zweite ziehe aus dem Integral raus, dann wird es $+$ und alles wird einfacher.
Rechne im zweiten Schritt nur das noch fehlende Integral in einer Nebenrechnung aus.
Baue dann am Ende alles in einem Endergebnis zusammen (in der Form $\int x^2\cdot e^{-x}\, dx =.... +C$.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 39.92K

 

Leider scheint diese Antwort Unstimmigkeiten zu enthalten und muss korrigiert werden. Mikn wurde bereits informiert.