Masstäbliches Vergrössern und Verkleinen-änliche Figuren

Aufrufe: 252     Aktiv: 07.12.2023 um 12:58

0
Hi. Ich verstehe nicht, wie ich rechnerisch auf die Höhe und den Radius komme, wenn ich nur die Volumen von den zwei Zylinder habe.
Diese Frage melden
gefragt

Punkte: 20

 
Kommentar schreiben
1 Antwort
1
Diese Aufgabe ist nicht eindeutig lösbar, d.h. es gibt mehrere Möglichkeiten, zwei zueinander ähnliche Zylinder mit dem angegebenen Volumen zu finden.

Man kann ja trotzdem anfangen zu rechnen. Dazu schreibt man erstmal auf, was "ähnlich" bedeutet. Zwei Körper sind sich ähnlich, wenn der eine aus dem anderen durch Streckung einen Faktor k>0 hervorgeht. Das heißt für die Zylinder:
\(r_2=k r_1\)     (1)
\(h_2=k h_1\)    (2)
wobei
\(r_1\) = Radius kleiner Zylinder
\(r_2\) = Radius großer Zylinder
\(h_1\) = Höhe kleiner Zylinder
\(h_2\) = Höhe großer Zylinder

Dann muss man die vorgegebenen Volumina in Formeln gießen:
Volumen des kleinen Zylinders: \(V_1 = \pi r_1^2 h_1 = 157,\!08 \,\mbox{cm}^3\)      (3)
Volumen des großen Zylinders: \(V_2 = \pi r_2^2 h_2 = 4241,\!16\, \mbox{cm}^3\)    (4)
Wenn Du nun Gl. (1) und (2) in (4) einsetzt, erhälst Du zusammen mit (3) einen konkreten Wert für k.

Dann aber stellt man fest: Man kann \(r_1>0\) beliebig wählen. Mit (3) ergibt sich \(h_1\). Mit (1) und (2) ergeben sich \(r_2\) und \(h_2\), und es ergeben sich zwei Zylinder, die
- (1) und (2) erfüllen, also zueineinander ähnlich sind
- (3) und (4) erfüllen, also die vorgeschriebenen Volumen haben
Das funktioniert für jedes positive \(r_1\)! Da es unendlich viele positive Zahlen gibt, gibt es unendlich viele Möglichkeiten, so ein Zylinderpaar zu finden!

Für die Aufgabe muss man aber noch zeigen, dass die Zylinder nicht ähnlich sein MÜSSEN. Da muss man nur irgend ein Gegenbeispiel finden, z.B. \(r_1=r_2= 1\,\mbox{cm}\). Aus (3) und (4) ergeben sich wieder \(h_1\) und \(h_2\), und dann muss man noch zeigen: Mit den oben ermitteltem k gelten die Gleichungen (1) und (2) nicht.
Diese Antwort melden
geantwortet

Punkte: 2.34K

 

Kommentar schreiben