Abstand Punkt Gerade bei Vektoren im R2

Aufrufe: 68     Aktiv: 24.09.2021 um 13:09

0
Meines Wissens gibt es da mehrere Wege, finde die hessesche Normalform am einfachsten. Kann ich dann immer mit diesem Verfahren fortfahren, oder muss man bei Manchen andere Varianten verwenden?
Diese Frage melden
gefragt

Punkte: 4

 
Kommentar schreiben
1 Antwort
-1
Wenn du eine gegeben Gerade hast. dann hast du auch die Steigung ; wenn die Steigung m ist, dann ist die Steigung der orthogonalen Geraden \({-1 \over m}\)
Den absoluten Term der Geraden berechnest du, indem du die Punktkoordinaten in die Senkrechtengleichung einsetzt.
Diese Antwort melden
geantwortet

Sonstiger Berufsstatus, Punkte: 9.15K

 

Für den,der` nicht verstanden hat. Abstand mit Pythagoras berechnen.   ─   scotchwhisky 23.09.2021 um 22:39

1
Ich finde das hier gerade mit einem vorhandenen negativen Vote.

Verstehe die gegebene Antwort aber auch nicht wirklich - erstmal funktioniert sie nicht bei Geraden parallel zu einer der Koordinatenachse (und es ging ja in der Frage darum, ob die Hesse'sche Normalform immer geht - da hilft ja nicht ein Verfahren als Antwort, das nicht immer geht), und zum zweiten scheint die Gerade auch nicht als Funktion, sondern vektoriell vorgegeben zu sein - wenn ich die Frage richtig verstehe.

Die Hesse'sche Normalform funktioniert - so weit mir bekannt ist - immer. Dass es Fälle gibt, in denen ein anderes Verfahren schneller geht, eben z.B. wenn die Gerade parallel zu einer Koordinatenachse liegt, ändert das ja nicht.
  ─   joergwausw 23.09.2021 um 23:01

Da gehört aber ein bisschen mehr zu als Pythagoras. Erstmal muss man aus einer Geraden in Parameterform die Steigung ablesen (wird nur noch selten im Unterricht behandelt). Dann muss man den Schnittpunkt der beiden Geraden bestimmen, um überhaupt zu wissen, zwischen welchen Punkten der Abstand berechnet werden soll. Pythagoras ergibt sich erst dann und sowieso aus dem Betrag von Vektoren.

Und zu guter Letzt: das in meinen Augen hier beschriebene deutliche aufwendigere Verfahren beantwortet nicht die eigentlich gestellte Frage. Ich verstehe nicht, wieso hier so selten auf die konkret gestellten Fragen der Leute eingegangen wird und irgendwelche Antworten geliefert werden, die nichts mit der/den gestellten Frage(n) zu tun haben...
  ─   cauchy 24.09.2021 um 01:50

Man kann auch andere Varianten anwenden. Man muss nicht, aber man kann. Und es wurde nach Varianten gefragt. Es ist auch nicht gesagt, dass die Gerade in Normalform vorgegeben ist. Frage mal richtig lesen.   ─   scotchwhisky 24.09.2021 um 07:19

1
Es hat ja niemand hier behauptet oder vorausgesetzt, dass die Gerade in Normalform vorgegeben ist Dafür muss ich die Frage nicht lesen... in der Überschrift steht aber deutlich, dass Vektoren im R2 gegeben sind.

Wenn die Gerade in Parameterform vorgegeben ist, dann ist es aber auch nicht so schwer, dazu einen Normalenvektor zu finden und den dann zu normieren (dabei kommt dann auch der Pythagoras vor...).

Und in der Frage steht "... oder muss man bei manchen andere Varianten anwenden" - das Wort 'muss' deutet für mich darauf hin, dass nach Varianten gefragt wird, die gemacht werden müssen, weil die Hesse'sche Normalform nicht funktioniert - es wird nicht nach Verfahren gefragt, die auch funktionieren (bzw. wie hier: 'die auch, aber leider nicht immer' funktionieren).
  ─   joergwausw 24.09.2021 um 09:05

Nicht immer funktionieren?
Meinst du damit die achsenparallelen Geraden?
Das sind ja nun ganz einfache Spezialfälle wo man den Abstand sofort sieht.
  ─   scotchwhisky 24.09.2021 um 10:17

Natürlich sind das ganz einfache Spezialfälle - aber die Frage war nun mal so gestellt: Gibt es Ausnahmen, bei denen die H-N-F nicht funktioniert? Dann eine Variante zu erklären, bei der es Ausnahmen gibt (und seien sie noch so einfach), ergab aus meiner Sicht nicht wirklich eine sinnvolle Antwort auf diese Frage.   ─   joergwausw 24.09.2021 um 10:28

Bevor man anderen sagt, sie sollen richtig lesen, sollte man es erst einmal selbst tun. Immer diese "aggressiven" Reaktionen, wenn man gerechtfertigte Downvotes/Kritik kassiert. Wie wäre es mal mit etwas mehr Selbstreflexion und weniger Arroganz?   ─   cauchy 24.09.2021 um 13:09

Kommentar schreiben