Produktregel/vollständige induktion

Aufrufe: 34     Aktiv: vor 2 Tagen, 21 Stunden

0

Hallo

ich kenne zwar die produktregel hatte jedoch bis jetzt niemals eine aufgabe wo ich die vollständige induktion anwengen musste mit der produktregel, könnte mir jemand zeigen/sagen wie man hier genau vorgeht MFG.

gefragt vor 3 Tagen, 3 Stunden
t
thomasfr,
Punkte: 19

 
Kommentar schreiben Diese Frage melden
2 Antworten
1

Vollständige Induktion:
Induktionsanfang n=1 :\(f´(x)= (x^3*e^x)´=(v*u)´=v*u´+ u*v´=u(v+v´) \text { weil mit } u=e^x \text { und } u´=e^x \text { gilt } u´=u ; v=x^3 ; v´=3x^2\)
\(==> f´(x)=e^x[x^3 +3x^2] = [x^3 +3*1*x^2 + 3*1*(1-1)*x+ 1*(1-1)*(1-2))]e^x=[x^3 +3x^2]e^x\)
also gilt die Behauptung für n=1.
Jetzt nachweisen, dass die Behauptung auch für n+1 gilt (unter der Annahme dass sie für n gilt)
\(f^{(n+1)}(x)=( f^{(n)}(x))´= ([x^3 +3nx^2+3n(n-1)x+n(n-1)(n-2)]e^x )´=(v*u)´  \text { mit } u=e^x \text { und  } v= x^3 +3nx^2+3n(n-1)x +n(n-1)(n-2)  \)
 \((v*u)´= uv´+ vu´= u(v+v´) \text { weil }  u=e^x = u´\)
 \( e^x (v + v´)= e^x[(x^3 +3nx^2 +3n(n-1)x +n(n-1)(n-2) )+ (3x^2  +6xn +3n(n-1))] =e^x[x^3 +x^2(3n +3)+x(3n(n-1) +6n) +n(n-1)(n-2) +3n(n-1)]= e^x[x^3 +3x^2(n+1)+x((3n(n-1+2))+n(n-1)((n-2)+3))]= e^x[ x^3 +3x^2(n+1)+3n(n+1)x +n(n-1)(n+1)]\) q.e.d

geantwortet vor 2 Tagen, 21 Stunden
s
scotchwhisky
Sonstiger Berufsstatus, Punkte: 3.42K
 
Kommentar schreiben Diese Antwort melden
1

Es funktioniert wie immer.

Induktionsanfang

Induktionsschritt

An dieser Aufgabe ist nichts anders als die gewohnten mit der Summe.

geantwortet vor 2 Tagen, 23 Stunden
g
gardylulz
Student, Punkte: 1.34K
 
Kommentar schreiben Diese Antwort melden