Exponentielle Regressionskurve bilden

Erste Frage Aufrufe: 45     Aktiv: 05.04.2021 um 22:54

0


Hallo, bin gerade total frustriert, wie kann ich denn bitte eine exponentielle Regressionskurve mit der quadratischen Regressionskurve bilden? Meine exponentielle Regressionskurve muss mit e sein? Kann das mir einer erklären, vielleicht so, dass es auch ein Typ checkt, der eine Niete in Mathe ist, also ohne "krasse" Fachsprache etc.?
gefragt

Punkte: 12

1+2=3 , bearbeitet 05.04.2021 um 22:45

 

kann ich die frage irgendwie löschen? Da ich gerade gelesen habe, dass man keine seiten hochladen darf   ─   felix123 05.04.2021 um 22:40

Ich habe mal das Bild entfernt, somit sind die ganzen Antworten noch da. Das kannst du übrigens auch selber indem du auf "Bearbeiten" klickst :)   ─   1+2=3 05.04.2021 um 22:46

Danke dir, leider ist hier das bearbeiten nicht mehr vorhanden. Ist glaube ich nur in den ersten paar Minuten da. Aber dir vielen Dank :)   ─   felix123 05.04.2021 um 22:49

Okay, das wusste ich nicht... Gerne ;)   ─   1+2=3 05.04.2021 um 22:54

Kommentar schreiben

1 Antwort
0

Die Gleichung für die quadratische Regressionskurve ist gegeben.
Eine exponentielle Regressionskurve hat hier die Funktionsgleichung: \(B(t)=S-(S-B(0))e^{-kt}\) (Beschränktes Wachstum/Zerfall).
Dabei ist S die Schranke (hier 20 °; kälter kann die Flüssigkeit ja nicht werden) und B(0) = 90 °..
Das k kannst du anhand der Daten ermitteln. 
Beispiel: du löst die Gleichung \(B(5)=22=20-(20-90)e^{-k5}\) nach k auf.
(  \( k=  {\ln ({2 \over 70}) \over -5} )\)

Diese Antwort melden
geantwortet

Sonstiger Berufsstatus, Punkte: 7K
 

Da ist aber das Problem, wenn ich z.B den Punkt 4/26 nehme, komme ich ja am Ende auf ein anderes k, als mit dem punkt 5/22   ─   felix123 05.04.2021 um 21:45

oder ich bin gerade total lost   ─   felix123 05.04.2021 um 21:56

auch bei der quadratischen Regressionskurve stimmen die Werte nicht genau.
Die Kurven sind Näherungen, die nicht unbedingt genau durch die Messwerte gehen sondern den Verlauf der Messwerte abbilden sollen. Der k-Wert liegt so bei -065 bis -0,7 ; d.h . dass eine ca. 35% bis 30% -Abnahme der Temperatur pro Minute stattfindet.
  ─   scotchwhisky 05.04.2021 um 22:06

Ja, genau, das ist keine Regressionskurve, sondern nur eine exponentielle Funktion, die irgendwie angepasst wird. Was habt Ihr in der Lehrveranstaltung dazu gemacht? Solche Aufgaben fallen ja nicht vom Himmel und unsere Hilfen/Erklärungen müssen darauf aufsetzen.
Die angegebene quadr. Funktion ist jedenfalls genau das gemaß der Fehlerquadratmethode eindeutige Polynom 2. Grades zu diesen Daten.
  ─   mikn 05.04.2021 um 22:15

also bin zurzeit im Abi, wir haben dazu nur gemacht, wie man e funktionen spiegelt, asymptoten abliest und ln nutzt um diesen x wert runter zu bekommne. Das ist ne Aufgabe von einem Hilfebuch fürs Abi. Unsere Lehrer hat dazu nichts weiter erklärt, denke mal die Aufgabe ist dann vielleicht auch nicht relevant für uns. Obwohl mein Lehrer die uns aufgegeben ht, vielleicht hat er nicht genau geschaut.   ─   felix123 05.04.2021 um 22:23

Habt Ihr denn Ausgleichsrechnung gemacht, so dass Du das angeg. Polynom 2. Grades berechnen könntest, wenn es nicht gegeben wäre?   ─   mikn 05.04.2021 um 22:26

Nein haben wir nciht   ─   felix123 05.04.2021 um 22:30

Dann hat der Lehrer wohl wirklich nicht genau hingeschaut. Die exponentielle Regression ist erheblich aufwendiger als die mit Polynomen.   ─   mikn 05.04.2021 um 22:41

Okay danke dir   ─   felix123 05.04.2021 um 22:42

Kommentar schreiben