Wahrscheinlichkeitsverteilung

Aufrufe: 270     Aktiv: 9 Monate, 2 Wochen her

0

Hallo Leute,

kann mir jemand erklären, wie man hier rechnet?

In einer Box befinden sich zehn Kugeln, davon sind zwei blau und acht rot. Man zieht mit einem Griff vier Kugeln aus dieser Box. Die Zufallsvariable X steht für die Anzahl der roten Kugeln bei diesem Zug. Wie viele rote Kugeln kann man erwarten? 

E(x)=? 

gefragt 9 Monate, 2 Wochen her
anonym
Punkte: 98

 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hey,

Frohe Ostern erstmal! Es gibt die folgenden möglichen Ergebnisse:

1. 2x rot und 2x blau -> P(X = 2)

2. 3x rot und 1x blau -> P(X = 3)

3. 4x rot und 0x blau -> P(X = 4)

Jetzt handelt es sich hierbei um ein Zufallsexperiment ohne zurücklegen, bei dem nur die Häufigkeit der gezogenen Kugeln und nicht deren Reihenfolge relevant ist. Du musst für Erwartungswert der Zufallsvariable X nun die oben genannten Wahrscheinlichkeiten für 2, 3 oder 4 rote Kugeln bestimmen. Das könnte man z.B. über ein Baumdiagramm machen, wo du die entsprechenden Pfade heraussuchen musst und die Wahrscheinlichkeiten der Pfade addierst, oder (falls bekannt) die Hypergeometrische Wahrscheinlichkeitsverteilung mit N=10, M = 8 und n = 4 benutzt. Zum Ende dann gilt:

\( E(X) = 2 \cdot P(X = 2) + 3 \cdot P(X = 3) + 4 \cdot P(X = 4) \)

 

[EDIT] Falls ihr die hypergeometrische Verteilung kennt und es nur die Aufgabe war diese zu verwenden, dann kann man den Erwartungswert natürlich auch damit berechnen. Entsprechend der Formel würde dann gelten:

\( E(X) = n \cdot \frac{M}{N} = 4 \cdot \frac{8}{10} = 4 \cdot 0,8 = 3,2 \)

geantwortet 9 Monate, 2 Wochen her
el_stefano
M.Sc., Punkte: 5.5K
 

Vielen Dank für deine Antwort :)
Ich hätte dazu mal paar Fragen. Wie bist du auf P(X=2), P(X=3) gekommen?
Ist das die Anzahl der roten Kugeln?
LG
  ─   anonym 9 Monate, 2 Wochen her

Ja genau P(X=2) beschreibt die Wahrscheinlichkeit, dass 2 rote Kugeln unter deinen 4 gezogenen Kugeln sind, P(X=3) dann für 3 und P(X=4) für 4 rote Kugeln.

Deine Zufallsvariable X zählt ja gerade die Anzahl der roten Kugeln.
  ─   el_stefano 9 Monate, 2 Wochen her

Okay :) Aber wie lautet dann die Wahrscheinlichkeit für P(X=2)? Ich versteh eben nicht, wie man auf die Wahrscheinlichkeiten kommt.   ─   anonym 9 Monate, 2 Wochen her

Im Lösungsbuch steht: E(X)= 2*2/15+3*8/15+4*1/3
Ich versteh halt nicht wie man zb. auf 2/15 oder 1/3 kommt.
  ─   anonym 9 Monate, 2 Wochen her

Wie gesagt entweder du rechnest das über die Hypergeometrische Verteilung mit den gegebenen Parametern, dann solltest du direkt auf die Werte kommen,

oder du stellst es dir mal an einem 4-stufigen Baumdiagramm dar. Dann hast du immer 2 Äste, rot oder blau. Entsprechend musst du dann die Wahrscheinlichkeiten an die einzelnen Äste schreiben (Achtung dabei, in den unteren Stufen sind bereits gezogene Kugeln zu berücksichtigen).

Die erste Stufe wäre somit: rot (Wahrscheinlichkeit 8/10) blau (Wahrscheinlichkeit 2/10)
Von der ersten Stufe unterscheidest du wiederum die beiden möglichen Events:
- Rot: Rot (Wahrscheinlichkeit 7/9, da nur noch 9 Kugeln zur Auswahl stehen und bereits eine rote gezogen wurde) Blau (Wahrscheinlichkeit 2/9)
- Blau: Rot (Wahrscheinlichkeit 8/9) Blau (Wahrscheinlichkeit 1/9)

Und dann immer so weiter. Am Ende hast du dann die ganzen Pfade und kannst quasi zählen welcher Pfad zu welcher Anzahl von gezogenen roten Kugeln gehört und wir groß dort die Wahrscheinlichkeiten sind.
  ─   el_stefano 9 Monate, 2 Wochen her
Kommentar schreiben Diese Antwort melden