Satz von Polya

Aufrufe: 330     Aktiv: 09.07.2023 um 22:05

0

Hi, ich brauche Hilfe bei dieser Aufgabe, ich moechte zeigen, dass || l_n||_C[0,1]* = Σ |ω^n _j |, also die Ungleichung ≤ ist klar aber die andere checke ich nicht , und dann, dass dass es eine stetige stückweise lineare Funktion f0 gibt, s.d  ||f0||=1 und
l_n(f0)= Σ |ω^n _ j | gilt.

EDIT vom 08.07.2023 um 01:42:

Hi, ich brauche Hilfe bei dieser Aufgabe. Ich moechte zeigen, dass ${\|l_n\|}_{{C([0,1])}^*} =  \sum_{j=0}^{n} | {{\omega}^n}_j |  $,  (die Ungleichung ≤ ist klar) und dann dass es eine stetige stückweise lineare Funktion $f_0$ gibt, sodass ${\|f_0\|}=1$ und $l_n(f_0)= \sum_{j=0}^{n} | {{\omega}^n}_j |$ .
Ich freue mich auf eure Hilfe :)
Diese Frage melden
gefragt

Punkte: 10

 

Du kannst hier übrigens $\LaTeX\,$-Formeln wie gewöhnlich einfügen (\$\$...$$ oder \$...$ für inline), das macht deine Überlegungen/Ausführungen lesbarer.   ─   posix 06.07.2023 um 22:58

Ich würde dir https://math.stackexchange.com/ für solche Fragen empfehlen, falls dir Englisch nichts ausmacht.   ─   posix 09.07.2023 um 21:33

Was ist denn $\mathbb{P}(0,1)$? Sind das Polynome? Eine weitere Sache, die meine Lust mich dieser Frage anzunehmen deutlich mindert, ist, dass du keine beantworteten Fragen abhakst.   ─   crystalmath 09.07.2023 um 22:05
Kommentar schreiben
0 Antworten