Hilfe bei der Aufgabe mit Logarithmen!

Erste Frage Aufrufe: 104     Aktiv: 31.07.2021 um 22:12

0
Ich habe ein Problem bei einer Aufgabe. 

Zu berechnen ist die Aufgabe :

Könnte hier mir mal bitte jemand die einzelnen Schritte, zum berechnen erklären?

MfG Nick
Diese Frage melden
gefragt

Punkte: 12

 

Eigentlich sieht man es sofort: Die Frage lautet eigentlich: a hoch was gibt $a^\frac{1}{2}$   ─   h1tm4n 30.07.2021 um 16:57
Kommentar schreiben
1 Antwort
0
Beachte $\sqrt{a}=a^{\frac12}$ und wende eine der Logarithmus-Rechenregeln an.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 16.14K

 

Das habe ich getan. Ich komme denn immer auf 0,5*log(a) a . Das (a) soll die Basis darstellen, weiß nicht wie man hier untergestellte Zahlen/Buchstaben macht.
Oder soll das schon die Lösung sein ?
  ─   nickde 30.07.2021 um 16:46

So weit richtig. Du musst dir nur noch klar machen, warum $log_{a}a$ = 1 ist.   ─   h1tm4n 30.07.2021 um 17:12

Also ist die Aufgabe so gelöst ?

Und wieso Log(a) a= 1 ist erschließt sich mir auch nach einer knappen Stunde nicht so ganz. =( Es tut mir leid, wenn die Fragen etwas dumm wirken. Ich habe das Thema seit Anfang der Woche und auch nur bis Sonntag Zeit, so viel wie möglich zu verstehen, da ich neben der Arbeit mein Abitur mache.
  ─   nickde 30.07.2021 um 18:04

Das ist das allererste, was man über den Logarithmus lernt, das hast Du bestimmt gehabt: logarithmus von b zur Basis a ist die Zahl, die a hoch (diese Zahl) gleich b ist. Also? Ziel der Aufgabe ist es u.a. das zu verstehen.   ─   mikn 30.07.2021 um 18:34

Meinst du damit das der Logarithmus zur Basis immer 1 ist ? Also wegen a^1 = a ?   ─   nickde 30.07.2021 um 21:01

Es geht nicht um meine Meinung, es geht darum, was $\log_a a$ ist. Das fehlt Dir noch um die Lösung komplett zu machen.
Ein anderer Spruch zum auswendig lernen: $\log_a b$ ist die Antwort auf die Frage "a hoch wieviel ist b?".
  ─   mikn 30.07.2021 um 21:15

Vielleicht noch ein anderer elementarer Weg, um diese Aufgabe zu lösen: \(\log_a b\) ist die Zahl \(s\), mit der \(a\) potenziert werden muss, um \(b\) zu erhalten, also \(a^s=b\). Gesucht ist also die Zahl, mit der du \(a\) potenzieren musst, um \(\sqrt{a}\) zu erhalten, und es gilt ja bekanntlich \(a^{\frac 12}=\sqrt{a}\)   ─   mathejean 30.07.2021 um 21:19

1
Ok, habe mir das alles nochmal angesehen. Habe die Aufgabe gelöst, mit eurer Hilfe. Danke für die Geduld =)   ─   nickde 31.07.2021 um 22:12

Kommentar schreiben