Lineare Algebra

Aufrufe: 420     Aktiv: 26.01.2021 um 13:02

0

Hat jemand vllt Idee für 1 und 2?

ich bin jetzt ganz verwirrt:( was meint die Aufgabe 1 dass ich Operationen definieren soll?

und wie mache ich der Beweis bei 2?

Diese Frage melden
gefragt

Student, Punkte: 97

 
Kommentar schreiben
1 Antwort
0

Zu Aufgabe 1: Zu einem Vektorraum gehören neben der Menge der Vektoren ja immer zwei Operationen. Eine nennt man üblicherweise "Addition", es ist eine Abbildung \(L_N\times L_N\to L_N\) (mit bestimmten Eigenschaften, siehe Definition) die andere "Skalarmultiplikation", eine Abbildung \(\mathbb R\times L_N\to L_N\) (wieder mit bestimmten Eigenschaften). Im Allgemeinen muss das aber nichts mit einer Addition oder Multiplikation zu tun haben, deshalb muss man sich überlegen, welche Operationen die Menge zu einem Vektorraum machen. Hier ist das allerdings ziemlich langweilig, man nimmt einfach die normale Funktionsaddition und Skalarmultiplikation von Funktionen: Für \(f,g\in L_N\) und \(\lambda\in\mathbb R\) können wir für definieren $$f+g:\mathbb R\to\mathbb R,\quad (f+g)(x):=f(x)+g(x)\quad\text{ für alle }x\in\mathbb R,$$$$\lambda f:\mathbb R\to\mathbb R,\quad(\lambda f)(x):=\lambda f(x)\quad\text{ für alle }x\in\mathbb R.$$ Rechne nach, dass diese beiden Operationen alle Eigenschaften erfüllen, die ein Vektorraum fordert, insbesondere auch, dass \(f+g,\lambda f\in L_N\) gilt.

Zu Aufgabe 2: Was passiert für \(k=0\)? Ist die Menge also linear unabhängig? Welche Vektoren musst du ggf. weglassen, damit sie linear unabhängig wird?

Diese Antwort melden
geantwortet

Punkte: 11.27K

 

Kommentar schreiben