Beweis 1/(-1)^n = (-1)^n

Erste Frage Aufrufe: 71     Aktiv: 09.11.2021 um 16:07

0
Könnte mir bitte jemand kleinteilig mit Gesetzen beweisen, warum:


gilt?

Vielen Dank!
Diese Frage melden
gefragt

Punkte: 14

 
Kommentar schreiben
1 Antwort
1
Du kannst dir die Aussage selbst beweisen. Erweitere dazu den Bruch \( \frac{1}{(-1)^n} \) mit \( (-1)^n \) und fasse den Nenner mit dem Potenzgesetz \( a^n \cdot b^n = (a \cdot b)^n \) zusammen. Das sollte dich zum Ziel führen.
Diese Antwort melden
geantwortet

Student, Punkte: 6.68K

 

Vielen Dank ich habs! Nur wie soll man darauf kommen, dass man erweitern soll? Was sind die gängigen Methoden bei Beweisen - Gibt es eine Art Liste die man "einfach" mal durchspielt z.B.: Erweitern, Kürzen, Binomische Formeln etc...?   ─   foreversun 08.11.2021 um 17:46

2
Beweise haben viel mit Kreativität zu tun und meistens gibt es verschiedene Wege, sowas anzugehen.
Man hätte das Problem z.B. auch so lösen können: \( \frac{1}{(-1)^n} \) ist das Inverse Element von \( (-1)^n \), d.h. es ist die eindeutige Zahl, für die \( \frac{1}{(-1)^n} \cdot (-1)^n = 1 \) gilt. Wegen \( (-1)^n \cdot (-1)^n = ((-1) \cdot (-1))^n = 1^n = 1 \) muss somit \( \frac{1}{(-1)^n} = (-1)^n \) sein.
Was du auf jeden Fall draufhaben musst, sind die Grundlagen (also quasi alle wichtigen Rechengesetze und Definitionen, die es so gibt). Damit kannst du dann rumprobieren, bis du zu einem Ansatz kommst, der funktioniert (Das kann teilweise sehr lange dauern und mühsam sein). Am Ende geht es immer darum, auf die richtigen Ideen zu kommen, und dafür gibt es leider keine Anleitung. Man muss halt ein bisschen tüfteln.
  ─   anonym83bed 08.11.2021 um 18:02

2
Vielleicht noch eine einfachere Alternative mithilfe der Potenzgesetze: \(\frac{1}{(-1)^n}=\frac{1^n}{(-1)^n}=(\frac{1}{-1})^n=(-1)^n\)   ─   mathejean 09.11.2021 um 08:27

Vielen Dank, ich persönlich finde deinen 2. Beweis eleganter :-) Ich habe etwas inneren Widerstand, bei der Vorstellung, dass ich die Grundlagen, also alle wichtigen Rechengesetze und Definitionen draufhabe. So ähnlich, wie wenn ich das Grundgesetz draufhabe. Jedoch kann ich mir ebenfalls vorstellen, dass dies ein effektiver Weg ist :-D   ─   foreversun 09.11.2021 um 15:19

@mathejean Vielen Dank, bei $1 = 1^n$ kann man das $^n$ speziell bei $1^n$ als Darstellungsform von $1$ sehen/verstehen oder wird hier trotzdem die $1$, $n$ mal genommen? Annehmen würde ich das Ganze, weil $1$ das neutrale Element der Multiplikation ist.   ─   foreversun 09.11.2021 um 15:32

1
$1^n=1\cdot 1\cdot 1\cdot\dots $ einfach, weil es so definiert ist. Und ja, weil $1$ das neutrale Element der Multiplikation ist, ändert sich der wert eben auch nicht, egal, wie viele Faktoren man davon hat.   ─   cauchy 09.11.2021 um 16:07

Kommentar schreiben