- gestellte Fragen oder gegebene Antworten wurden upvotet (5 Punkte je Upvote)
- erhaltene Antwort akzeptiert (2 Punkte je Antwort)
- gegebene Antwort wurde akzeptiert (15 Punkte je Antwort)
Da stehen einfach ein paar Aussagen untereinander. Das ist kein Beweis. Die richtige Idee ist aber drin. Ein Beweis ist eine Abfolge von Argumenten, die beginnend bei der Voraussetzung bei der Behauptung ankommt. Der Anfang des Beweises lautet hier: "Seien $a,b,c\in Z$ mit $a|b$ und $a|c$." Das ist rein abgeschrieben, das schafft man immer und so hat man den Anfang schonmal richtig. Jetzt kommt der kreative Teil. Was bedeutet $a|b$ nach Def. von "teilt"? Was bedeutet die Behauptung? Das ist eine Nebenüberlegung. Der Beweis geht dann so weiter. "D.h. ....." (Def. einsetzen). Steht in Deiner Rechnung mittendrin. Bringe alles in eine logische Reihenfolge und vor allem: Verwende Worte, wie d.h., also folgt, es gibt usw..
Danke dir vielmals für die ausführliche Antwort! Mit dem Wissen werde ich nochmal anders an die Aufgabenstellung herantreten und es hoffentlich richtig lösen und aufschreiben 💪🏽
─
annalynn
11.12.2021 um 19:25
Leider scheint diese Antwort Unstimmigkeiten zu enthalten und muss korrigiert werden.
Mikn wurde bereits informiert.
1
Es gibt tatsächlich viele kurze Beweise. Das ist in der Regel nicht das Problem. Das Problem bei deinem "Beweis" ist, dass es keinerlei Struktur gibt, insbesondere deswegen nicht, weil du den allgemeinen Fall mit einem konkreten Zahlenbeispiel vermischst. Sowas macht man nicht. Zahlenbeispiele sind gut. Die macht man aber nicht in einem Beweis, sondern um sich die Aussage klar zu machen und zu verstehen. Außerdem sollte man sich angewöhnen, mathematischen Text zu schreiben und nicht nur einfach "Formeln hinzuklatschen".
Fange also so an: Es seien $a,b,c\in \mathbb{Z}$ und es gelte $a|b$ und $a|c$. Dann gibt es ... (Definition benutzen und mathematisch korrekt aufschreiben). Wegen $b-c=\dots$ folgt $a|(b-c)$.
Das ist viel strukturierter und kann man viel besser lesen und verstehen. Es hilft auch, sich für solche kleinen Beweise mal andere Beweise in Büchern durchzulesen, um zu lernen, wie man sowas mathematisch korrekt formuliert. Ansonsten sind die Ideen in deinem Beweis nicht falsch. Du musst es halt nur ordentlich aufschreiben. :)
Danke dir! Genau so eine Expertise wollte ich hören. Ich musste noch nicht so viel damit arbeiten und daher war ich sehr unsicher in der Vorgehensweise. Dann weiß ich jetzt schon mal Bescheid dass der Kern stimmt. Werde mich nochmal hinsetzen und es ordentlich aufschreiben :)
─
annalynn
11.12.2021 um 19:28
Hi :) Ich habe mich nochmal an der Aufgabe versucht, kannst du vlt drüber schauen?
─
annalynn
12.12.2021 um 15:20
Vielen lieben Dank für die Zeit und Hilfe!
─
annalynn
12.12.2021 um 16:01
Leider scheint diese Antwort Unstimmigkeiten zu enthalten und muss korrigiert werden.
Cauchy wurde bereits informiert.