Wie wird das Portfolio optimal aufgeteilt?

Erste Frage Aufrufe: 86     Aktiv: 13.03.2022 um 16:48

0

Aufgabe:

Ein Vermögen wird in ein Portfolio investiert, dass aus aus einer beliebigen streng positiven Kombination aus einer risikofreien Anleihe (I) mit einer Rendite von rf und einer risikobehafteten Aktie mit einer Zufallsrendite von r ̃s besteht.

Anteilige Investition in risikofreie Aktie: 1 ≥ x1 ≥ 0

In die risikobehaftete Aktie: x2

Die Investitionsentscheidungen eines rationalen Anlegers kann durch die folgende (erwartete) Nutzenfunktion erklärt werden:
E[U(R ̃P )] = E[R ̃P ] - y/2 E[(R ̃P - E[R ̃P ])2] = E[R ̃P ] - γ/2 var(R ̃P ), wobei R ̃P die Zufallsrendite von Portfolio P bezeichnet.

 


Problem/Ansatz:

1.) Leiten Sie Ihre optimale Investition in die riskante Aktie x∗2 ab, indem Sie die obige Nutzenfunktion maximieren.
Tipp: Schreiben Sie zunächst R ̃P aus der Gleichung heraus. Nehmen Sie dann die übliche Bedingung erster Ordnung für ein einfaches Optimierungsproblem. Denken Sie daran, dass x1 = 1 - x2 und var((1 - x2)rf + x2r ̃s) = x2 var(r ̃s ).
(b) Welchen Einfluss hat Ihre Risikoaversion γ auf x∗2?

Könnte mir hier jemand helfen?

Diese Frage melden
gefragt

Punkte: 10

 
Kommentar schreiben
0 Antworten