Induktionsbeweis

Erste Frage Aufrufe: 95     Aktiv: 04.11.2021 um 15:18

0
Könnte mir jemand bitte den induktionsschritt erklären:)?

Diese Frage melden
gefragt

Punkte: 20

 
Kommentar schreiben
2 Antworten
3
Du fängst jetzt mit \((n+1)^2\) an und verwendest die binomische Formel. Jetzt hast du \((n^2+2n+1)\). Nach Induktion sannahme ist dies größer-gleich \(2n-1+2n+1=2n +2n\). Da \(n \in \mathbb{N}\) ist, ist dies gröser-gleich \(2n+2 \geq 2n+1=2n+2-1=2(n+1)-1\).
Diese Antwort melden
geantwortet

Student, Punkte: 5.47K

 

Kommentar schreiben

1
Man nimmt an, die Aussage sei für ein  \(n \in \mathbb{N}\) (in deinem Fall \(n=1\)) wahr und zeigt davon ausgehend die Aussage für  \(n  + 1\). Sind beide Schritte erfolgreich durchgeführt, so ist die Behauptung für alle natürlichen Zahlen \(n \in \mathbb{N}\) gezeigt.

Hier noch die Lösung, da ich nicht weiß, ob du die hast.

\(
(n+1)^2 \geq 2(n+1) - 1\\
n^2+2n+1 \geq 2n+1 \qquad \mid -2n, -1\\
n^2 \geq 0
\)
Diese Antwort melden
geantwortet

Punkte: 39

 

@kowawa: "In Deinem Fall n=1": das gehört da nicht hin und ist falsch. Und Lösungen hinschreiben ist nicht Sinn des Forums, und Äquivalenzumformungen (dann noch unter Weglassen der Pfeile) sind nicht sinnvoll, man rechnet das viel einfacher in einer Kette durch.
Also, wenn schon vorrechnen (was nicht hilfreich ist), dann wie in der anderen Antwort.
  ─   mikn 04.11.2021 um 13:18

Deswegen auch in Klammern, und ist jenes nicht der Induktionsanfang? Besonders du kennst doch das Forum sehr gut und wenn ich mir die Antworten ansehe (z. B. die über mir), dann wird hoffentlich auch dir klar, dass beinahe alle Antworten die Lösung beinhalten. Ob jenes Sinnvoll ist oder nicht, lasse ich im Raum stehen. Des Weiteren tut es mir leid, dass ich die Äquivalenzpfeile vergessen habe, aber ob etwas einfacher ist, ist subjektiv, und eine andere Vorgehensweise, welche die Aufgabe löst ist keineswegs nicht sinnvoll. Fühlt man sich ja wie im Tutorium mit den ganzen angefressenen Mathematikern. :D   ─   kowawo 04.11.2021 um 15:18

Kommentar schreiben