- gestellte Fragen oder gegebene Antworten wurden upvotet (5 Punkte je Upvote)
- erhaltene Antwort akzeptiert (2 Punkte je Antwort)
- gegebene Antwort wurde akzeptiert (15 Punkte je Antwort)
Hallo, wir sollten heute in unserem Vorkurs Mathe das Binomische Theorem per vollständiger Induktion beweisen. Nach der Übung habe ich mit einem Kommilitonen gesprochen der Probleme hatte die Aufgabe zu lösen, da er sich an die dazu verwendete Identität nicht mehr erinnern konnte bzw. sie ihm unbekannt war (\(n \choose k-1\)+\(n \choose k\)=\(n+1\choose k\)). Er hatte mich dann gefragt ob man die Aufgabe auch ohne diese Identität lösen könnte, und mir ist aufgefallen, dass ich auch keinen anderen Weg kenne und auch gerade im Netz keinen solchen Beweis finden konnte. Hier also meine Frage: kennt jemand von euch eine solche Möglichkeit? Wäre auch naheliegend, da ich nicht denke, dass wir die Identität in der Schule mal angesprochen haben. LG
Das ist so aufjeden Fall die gängigste Methode und ich sehe bei einem Induktionsbeweis auch keine wirkliche Alternative. Man kann diese Formel jedoch auch komplett ohne vollständige Induktion rein kombinatorisch lösen. Schau mal ob du auf deiner Uni-Bibliothek das lineare Algebra Buch von Bosch herunterladen kannst (übrigens das beste Buch über lineare Algebra), dort findest du einen derartigen kombinatorischen Beweis ausformuliert (mehr Text als Gleichungen, daher nicht so schön/präzise) im Abschnitt Körper (1.3).
danke für die Empfehlung, ich denke ich schau da mal rein
─
fix
12.10.2021 um 14:02
Ja, siehe LinA Bosch 1.3
─
mathejean
12.10.2021 um 18:49
Bevor der Beweis mit Induktion geführt wird, wird er in meiner Auflage rein durch eine kombinatorische Methode geführt (dient zur Motivation des präziseren Beweises)
─
mathejean
12.10.2021 um 19:31
Kommentar schreiben
0
Das wird kaum gehen, da man ja von $\binom{n}k$ hochkommen muss auf $\binom{n+1}k$. Man kann es natürlich ohne Kenntnis des "Additionstheorems" beweisen, mit Bruchrechnung und Fakultäten, womit man aber das Additionstheorem mitbeweist ohne es zu merken. So schwer ist das ja nicht (Bruchrechnung/Hauptnenner usw.).
schon, wenn man aber vorher nicht weiß, dass das funktioniert kommt man ja erst gar nicht auf die Idee eine Indexverschiebung zu machen, trotzdem natürlich danke für die Antwort
─
fix
12.10.2021 um 13:58
Leider scheint diese Antwort Unstimmigkeiten zu enthalten und muss korrigiert werden.
Mikn wurde bereits informiert.