Integralrechnung: Integral von x * sin(x^2)

Aufrufe: 127     Aktiv: 25.07.2022 um 23:54

0
Hallo, 
ich hätte eine Frage zu dieser Aufgabe: Integral von x * sin(x^2)
Der Lösungsweg dafür wäre: x * sin(x^2) = 1/2 Integral sin(u) = -1/2 cos(u) = -1/2 cos(x^2)
Hier wird die Substitution verwendet. Leider verstehe ich nicht wieso man die verwendet. Hätte man das nicht auch mit der partiellen Integration berechnen können? Auch kann ich den Rechenweg nicht so ganz nachvollziehen.
gefragt

Punkte: 10

 
Kommentar schreiben
1 Antwort
0
Partielle Integration macht hier weniger Sinn es geht darum die Verkettung mit der Sinusfunktion durch die Substitution "aufzuheben", um so die Stammfunktion leichter berechnen zu können. Durch die Substitution kürzt sich dann durch das ersetzen des $dx$ das $x$ vor dem Sinus raus. Ist dir klar wie man die Integrationsvariable mit $dx$ durch $du$ ersetzt?
Edit: mache dir die Zwischenschritte klar sie bei der Substitution passieren. Wichtig ist noch zu erwähnen, dass falls du ein bestimmtes Integral hast du die Grenzen mitsubstituieren musst. Am Ende natürlich die Rücksubstitution nicht vergessen! (die bei dir ja aber vorhanden ist👍)
Diese Antwort melden
geantwortet

Punkte: 7.16K

 

Danke für deine Antwort, ich habe den Rechenweg jetzt nachvollziehen können.
Eine Frage: wenn die Funkion x * sin(x) lauten würde, könnte ich dann die partielle Integration nutzen?

  ─   user1265c9 25.07.2022 um 23:40

Wichtig ist: Beim Umformen das Integral nicht vergessen (ganz links) und vor allem stets(wirklich immer) das dx bzw. das du hinzuschreiben. Diese Ausdrücke sind keine Deko, sondern zwingend nötig beim Substituieren.
Und probier doch mal die partielle Integration. Es gibt wenig Verbote in der Mathematik und man lernt am besten durch Ausprobieren (und maqu weiß, dass die part. Int. wenig Sinn macht, weil er es irgendwann mal selbst so probiert hat (wie ich auch)). Es ist aber nicht verboten, sondern empfehlenswert, es zu probieren.
  ─   mikn 25.07.2022 um 23:44

Ja dort macht partielle Integration dann Sinn. Man möchte versuchen wenn möglich auf ein Standardintegral zu kommen. In deinem ersten Beispiel kommst du also mit Substitution zum Integral über $\sin(u)$ und in deinem zweiten Beispiel dann durch partielle Integration zum Integral über $\sin(x)$. Davon ist die Stammfunktion dann jeweils standardmäßig zu bestimmen.   ─   maqu 25.07.2022 um 23:47

@mikn danke für deine Anmerkung! Gut das du stets auf saubere Notation pochst, ich vergesse leider zu oft drauf hinzuweisen. An den Frager: Das $dx$ bzw. $du$ IMMER mit hinschreiben. Man muss ja wissen nach welcher Variable integriert wird. Hier mag das klar sein, was aber nicht immer so ist. Ähnlich wie beim Grenzwert, wo man ja auch den Limes vor den Ausdruck schreibt von dem man eine Grenzwertbetrachtung machen möchte.   ─   maqu 25.07.2022 um 23:54

Kommentar schreiben