Beweis Zahlenbereichserweiterung

Aufrufe: 442     Aktiv: 29.05.2021 um 16:33

0
Ich soll vor dem Hintergrund der Zahlenbereichserweiterung von N nach Z diesen Satz beweisen:



Habe ich den Satz so richtig bewiesen?

Vielen Dank!
Diese Frage melden
gefragt

Punkte: 25

 
Kommentar schreiben
1 Antwort
0
Deine Notation ist ein bisschen merkwürdig. Normalerweise konstruiert man \(\mathbb Z\) als \(\mathbb N\times\mathbb N/\sim\) mit der Äquivalenzrelation \((a,b)\sim(c,d):\Longleftrightarrow a+d=b+c\). Tupel schreibt man mit runden Klammern, und eckige Klammern stehen normalerweise für Äquivalenzklassen, d.h. \([(0,1)]\) wäre die Äquivalenzklasse des Paars \((0,1)\). Die Notation \([0,1]\), die du verwendest, sollte es eigentlich gar nicht geben, aber vielleicht wurde in deiner Vorlesung die Konvention vereinbart, die runden Klammern wegzulassen. Aber dann ist \([0,1]=-1\) und nicht Element davon. Ich würde dir raten, alle eckigen Klammern durch runde Klammern auszutauschen, dann entspricht die Notation dem Standard. Es kann aber natürlich auch sein, dass deine Vorlesung eine andere Notation eingeführt hat, dann passt das natürlich.
Der Beweis an sich ist korrekt und vollständig, vorausgesetzt, du weißt bereits, dass \([(\alpha_2,\alpha_1)]\) das Inverse zu \([(\alpha_1,\alpha_2)]\) ist. Ansonsten müsstest du das noch schnell nachrechnen.
Diese Antwort melden
geantwortet

Punkte: 11.27K

 

Kommentar schreiben