0
Hallo Zusammen

Ich habe folgende Funktion gegeben \(\phi_1:\mathbb{R}^2 \rightarrow \mathbb{R}^2 \,\,\, mit\,\,\, \phi_1(x,y)=(x^2-y^2,2xy)\) und muss untersuchen an welchen Punkten die Funktion lokal invertierbar ist. Ich habe versucht das ganze mit dem Satz der Lokalen Invertierbarkeit zu überprüfen bin aber nicht ganz sicher ob die Argumentation bzw. der rechenweg so machbar ist oder ob man zusätzlich eine Offene Umgebung angeben müsste. Könnte sich das jemand anschauen?




Vielen Dank

Liebe Grüsse
Diese Frage melden
gefragt

Student, Punkte: 899

 

Kommentar schreiben

2 Antworten
1
Wenn die Aufgabe nur lautet die genannten Stellen zu finden, dann hast Du alles genau richtig gemacht. Eine entsprechende Umgebung zu finden ist in der Regel auch nicht so einfach.
Aber Dein letzter Satz klingt etwas merkwürdig, den solltest Du anders formulieren.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 13.32K
 

Super vielen Dank für die Antwort, ja wie oben schon erklärt habe ich nach dem ersten Hochladen einen Fehler bemerkt, das ganze korrigiert bis auf den Satz, als ich das bemerkt habe war ich dann zu faul das ganze nochmals hochzuladen, sorry.
Ah okei super ja wir müssen nur die Punkte suchen und nicht eine explizite Umgebung also vielen Dank nochmals.
  ─   karate 18.04.2021 um 15:16

Kommentar schreiben

1
Prinzipiell ist Deine Lösung richtig, also das Prüfen der Invertierbarkeit mt der Jacobimatri. Nur der letzte Satz ist etwas komisch: Ersetze "therefore the only point" durch "Therefore all points". Es sind ja viele Punkte, an denen die Funktion lokal invertierbar ist.
Diese Antwort melden
geantwortet

Punkte: 30
 

Ja sorry ich hatte beim ersten Mal einen Berechnungsfehler gemacht, dann alles korrigiert bis auf den Satz, dieser ist mir untergegangen. Okei super vielen Dank.   ─   karate 18.04.2021 um 15:14

Kommentar schreiben