Umformung von Wurzeltermen

Erste Frage Aufrufe: 50     Aktiv: 05.11.2021 um 12:17

0
Das Problem habe ich dort gefunden: https://de.wikipedia.org/wiki/Scipione_del_Ferro

Wie komme ich von
dritte Wurzel von (10 + Quadratwurzel aus 108)
zu
1+Quadratwurzel aus drei ?

Bis
dritte Wurzel von (10+6*Quadratwurzel von 3) bin ich schon gekommen.
Wolframalpha hat mir als nächsten umformungsschritt noch empfohlen 2 auszumultiplizieren, der Rest wird aber nur kostenpflichtig verraten.
Also bin ich bei
dritte Wurzel aus (2* (5 + 3* Quadratwurzel aus 3) )
Und wie weiter?
 
Diese Frage melden
gefragt

Punkte: 12

 
Kommentar schreiben
1 Antwort
0
Wenn du doch schon weißt, was raus kommt, kannst du doch auch rückwärts rechnen und dir diese Schritte dann wieder vorwärts aufschreiben. Also, du weißt \((1+\sqrt{3})^3 = 10 + 6\cdot\sqrt{3}\). Dann multiplizier doch mal die linke Seite aus. ;))
Diese Antwort melden
geantwortet

Sonstiger Berufsstatus, Punkte: 2.48K

 

1
Ich denke es geht mehr darum, wie man so eine Aufgabe selber löst, das sind ja oft so kleine Vereinfachungsaufgaben. Man geht dabei in der Regel so vor, dass man sich einen kleinsten charakteristischen Term der Wurzel vornimmt und davon ausgeht, dass der Term innerhalb der Wurzel auch ein kubischer Term ist, sonst macht vereinfachen ja kaum einen Sinn. Hier würde man also \((a+\sqrt{3})^3=10+6\sqrt{3}\) setzen, ausmultiplizieren und Koeffizienten vergleichen. Dann kommt man relativ einfach zur Lösung. Man kann so i.d.R. die meisten derartigen algebraischen Probleme einfach und schnell lösen. LG   ─   fix 04.11.2021 um 21:28

Also vom Endergebnis starten und rückwärts rechnen:
\(1+\sqrt{3}\)
ist identisch mit der 3. Wurzel aus der 3. Potenz
\(\sqrt[3]{(1+\sqrt{3})^3}\)
dann binomische Formel ausmultiplizieren \((a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \)
\(\sqrt[3]{ 1^3 + 3\cdot1^2\cdot \sqrt{3} + 3 \cdot 1 \cdot (\sqrt{3})^2 + (\sqrt{3})^3 }\)
und vereinfachen/zusammenfassen
\(\sqrt[3]{ 1 + 3 \sqrt{3} + 3 \cdot 3 + (\sqrt{3})^2 \cdot \sqrt{3} }\)
\(\sqrt[3]{ 1 + 3 \sqrt{3} + 9 + 3 \cdot \sqrt{3} }\)
\(\sqrt[3]{ 10 + 3 \sqrt{3} + 3 \sqrt{3} }\)
\(\sqrt[3]{ 10 + 6 \sqrt{3} }\)

\(1+\sqrt{3} = \sqrt[3]{ 10 + 6 \sqrt{3} }\)
w,z,b,w,

Super! Danke! Da kommt ein Laie nicht so schnell drauf.
  ─   user50cc76 05.11.2021 um 12:17

Kommentar schreiben