Lösungsansatz: Textaufgabe zu Folgen, Reihen - Grundlagen

Aufrufe: 545     Aktiv: 17.09.2023 um 18:27

0
"Ein Turm wird aus Würfeln mit Kantenlänge 1/n , für n N, gebaut. Beim Bau wird folgendermaßen vorgegangen: Die Bodenfläche des (n + 1)-ten Würfel wird auf die Dachfläche des n-ten Würfel gesetz.

(a) Wie hoch wird der Turm?
(b) Kann das Volumen des Turms endlich sein?"

Das heißt man stapelt immer kleinere Würfel übereinander und diese Summe aus Würfeln bildet eine harmonische Reihe? Die Würfel werden zwar immer kleiner, die Reihe divergiert aber dennoch.

zu a): Unendlich hoch, weil die Reihe nicht konvergiert. Was wird hier verlangt? Divergenz zeigen? Reihe formulieren?

zu b): Nö, weil die Reihe nicht konvergiert. Und hier? Wohl kaum wieder Divergenz zeigen.


Verstehe ich das so richtig? Wahrscheinlich nicht....
Diese Frage melden
gefragt

Punkte: 12

 
Kommentar schreiben
1 Antwort
1
Wenn Du meinst, dass die Reihe divergiert, dann musst Du das nachweisen. Ich habe aber den Verdacht, Du hast die Reihe gar nicht aufgestellt, dann wird das schwierig.
Also, wie lautet die Reihe in a), und wie in b)? Danach geht es weiter.
Diese Antwort melden
geantwortet

Lehrer/Professor, Punkte: 39.54K

 

Dankeschön für die Antwort.

Die Folge in a) 1, 1/2,1/3,... 1/n; 1<= Folge <= unendlich -> nach unten beschränkt, monoton steigend, geht gegen unendlich -> divergent.

Die Folge in b) n^3, (n+1)^3 ... so? Oder (1/n)^3, (1/n+1)^3,... Bei letzteren ist es ja quasi das gleiche wie bei a) nur "schneller".
  ─   anonym2d7d2 24.11.2022 um 19:24

Herzlichen Dank. Na gut. Die formelle Ausdrucksweise google ich mir gleich zusammen. :^)

Zu b) Das Volumen geht ja ins unendliche. Dann zeig ich hier dass der Grenzwert gegen unendlich geht. Reicht das als Begründung? Oder zeig ich nochmal die Beschränkheit nach unten? Oder ist es doch etwas anders als bei a)?

Es tut mir wirklich Leid, aber mein Mathedeutsch ist starkt beschränkt und ich verstehe häufig nicht, was gefordert ist... Das durchführen geht dann dafür meist.
  ─   anonym2d7d2 24.11.2022 um 20:00

Naja, ich hab's nicht hinbekommen. Es ist einfach als würde ich eine fremde Sprache lesen und verstehen, aber könnte sie nicht sprechen. Ich google, guck YouTube Videos, wirf einen Blick in die VL.pdfs habe das Gefühl es nachvollziehen zu können, aber ich habe nicht die leiseste Ahnung, wie ich irgendetwas davon zeigen soll. Mathe bleibt einfach unglaublich frustrierend für mich. Als hätte ich eine Matheaphasie. Und das schlimmste: Ich habe keine Ahnung wo mein Problem liegt und wo ich ansetzen soll um das zu lernen. Es erscheint so unglaublich simpel, aber es geht einfach nicht. Mir fehlen einfach die Vokablen, aber ich weiß nicht welche.   ─   anonym2d7d2 25.11.2022 um 11:42

Naja, das ist leicht gesagt für dich... Du sprichst Mathe auf Niveau +C1 und ich auf A1.1 und versuch mich in B1.1 reinzufuchsen. Fehlende Grammatik und Vokabeln hemmen meinen Sprachfluss, weshalb ich Hand & Fuß zur Hilfe nehme. Und genau hier liegt das Problem für mich. Ich weiß nicht, wo ich es nachschlagen kann. Konkreter: Ich versuch das doch alles zu verschriftlichen, aber dabei kommt immer nur Murks raus und die Musterlösung tut meinem Selbstwertgefühl nicht gerade gut. Diese Frage werde ich erst einmal ruhenlassen, aber zu einem späteren Zeitpunkt nochmal drauf zurückkommen. Vorerst werde ich ein paar weitere stellen. Herzlichen Dank. Wirklich.   ─   anonym2d7d2 09.12.2022 um 05:01

1
Nachschlagen kann man im Internet, aber so viel Vokabular gibt es in dieser Aufgabe doch gar nicht. Ansonsten: Was ist unklar. Es scheitert häufig nämlich nicht am Vokabular (was man ja nachschlagen kann), sondern am logischen Denkvermögen bzw. Vorstellungsvermögen. Bevor man mit allgemeinem $n$ rechnet, kann man auch erstmal mit konkreten Zahlenbeispielen arbeiten, um ein Gefühl für die Struktur zu bekommen. Sobald man das verstanden hat, geht es dann darum, es mathematisch korrekt aufzuschreiben. Das kann am Anfang noch sehr schwierig sein, weil man auf alles achten muss, wird mit der Zeit aber eigentlich besser, was durch das Lesen mathematischer Literatur erreicht werden kann. Ziel ist es also, anzufangen und aufzuschreiben. Fehler kann man dann ausbessern und gerade bei solchen Dingen helfen wir auch immer gerne.   ─   cauchy 09.12.2022 um 11:46

Kommentar schreiben