Eine Fallunterscheidung fängt damit an, dass man eine Bedingung hinschreibt. Den Schritt hast Du übersprungen.
Hier braucht man aber keine Fallunterscheidung (und keine Probe), weil die Umformungen Äquivalenzumformungen sind.
Zu lösen ist $\sqrt{a^2+1}\sqrt{10}=|-2a-4|$. Also:
$\sqrt{a^2+1}\sqrt{10}=|-2a-4| \iff 10(a^2 +1)=(-2a-4)^2 \iff ... \iff a=-\frac13 \lor a=3$.
Fertig.
Auch Deine Probe zeigt, dass Du anscheinend nicht ausgelastet bist ;-) Um das Vorzeichen von $-2a-4$ zu prüfen, rechnet Du das Vorzeichen von $\frac{4a+1-5-6a}{\sqrt{a^2+1}}$ aus und damit man das nicht so schnell sieht, schreibst Du noch $\sqrt{10}=$ links daneben.
Und wenn eine Probe nötig wäre (hier nicht), dann macht man die bevor man die Tangentengleichung ausrechnet, damit man, falls eine Lösung rausfallen sollte, nicht eine Tangentengleichung unnötig ausgerechnet hat.
Also, übe man geordnetes Vorgehen, das spart eine Menge Zeit und Papier (und ist entsprechend weniger fehleranfällig).
Lehrer/Professor, Punkte: 36.77K
(Warum hast du die Betragsstriche bei | -2a -4| gesetzt? Könnte man auch Wurzel(a^2+1) im Nenner lassen? In diesem Beispiel ist es gemäss deinem Kommentar ja sowieso unnötig, da es eine Äquivalenzumformung ist. Wahrscheinlich dachte ich bei HNF sofort an Betragsstriche und habe sie darum gesetzt...)
Bei simplen Abstandsberechnungen (wie Punkt zu Gerade) mit HNF mache ich ja auch keine "Fallunterscheidung", sondern mache das Resultat einfach positiv, falls es negativ ist. Mir fällt jedoch ein Beispiel mit Winkelhalbierenden ein, wobei die Fallunterscheidung zwingend ist (da es zwei Winkelhalbierende gibt, z.B. bei zwei Geraden im Raum). Dieses Beispiel rechnet man ja auch mit der HNF...
Für mich noch unklar: Wann ist die Fallunterscheidung durchzuführen, sprich es gibt dann zwei Lösungen oder wann wird meine negative Lösung einfach positiv gemacht (sprich nur eine Lösung).
Meine Idee: Ich schaue mir die Aufgabenstellung an, wenn ein Abstand gefragt ist, muss es logischerweise nur eine Lösung geben (d.h. Betragsstriche machen negative Lösung positiv). Bei Winkelhalbierenden etc., wo von Beginn an logisch ist, dass es zwei geben muss, geben mir die Betragsstriche an, dass eine Fallunterscheidung durchgeführt werden muss.
Leider wurden uns die Betragsstriche nur kurz mit |-7| = 7 erklärt... ─ nas17 20.06.2022 um 22:47
Noch kurz zu den Betragsstrichen in diesem Bsp: Ich darf also den Nenner auf die linke Seite multiplizieren, und die Betragsstriche bleiben erhalten auf der rechten Seite? Oder beziehen sich die Betragsstriche ausschliesslich auf die Zähler (was für mich jedoch keinen Sinn machen würde). ─ nas17 20.06.2022 um 23:06
Gleichung dieses Typs habe ich nie geübt, werde ich aber tun. Ist sicherlich auch gut fürs Verständnis, wenn es um Betragsfunktionen geht. ─ nas17 21.06.2022 um 06:44