Matrix Beweisen

Aufrufe: 49     Aktiv: 22.04.2021 um 21:53

0
Kann mir wer helfen ?
Diese Frage melden
gefragt

 

Kommentar schreiben

1 Antwort
0
Angenommen die Eigenschaft gilt für ein festgelegtes \(A\). Dann gilt das insbesondere für jedes \(B\) das von der Form ist, dass jeder außer ein einziger Matrixeintrag eine \(0\) ist und dieser einzige Matrixeintrag eine \(1\). Wenn man dann die Multiplikationen \(A \cdot B\) und \( B \cdot A \) für jedes solche \(B\) durchspielt (es gibt natürlich genau \(m^2\) solche \(B\)'s weil ja die \(1\) an jeder beliebigen Stelle stehen kann), sieht man dass \(A\) von der genannten Form sein muss.
Diese Antwort melden
geantwortet

Student, Punkte: 2.29K
 

Kommentar schreiben